Determination of 5' nucleotidase activity of higher plants by using an improved method

Çesitli bitki dokularında nispeten yüksek, spesifik olmayan fosfataz aktivitelerinin varlıgı bilinmektedir. Bu enzimler aynı zamanda nükleosit monofosfatlardan da inorganik fosfatın uzaklastırılmasını katalize ederler. Simdiye kadar yayınlanan raporlara göre, saflastırılmamıs enzim ekstraktlarında 5’-nükleotidaz aktivitesiyle ilgili deneysel arastırmalar çogunlukla spesifik olmayan fosfatazların aktiviteleri dikkate alınmadan yapılmıstır. Bununla birlikte bazı arastırıcılar, fosfatazların $NaMoO_4$ ve KF gibi bazı inhibitörlerini assay karısımlarına ilave etmislerdir. Fakat fosfatazlar bu inhibitörlerle tamamen inhibe edilmeden 5’-nükleotidazın aktivitesine katılmıslardır. Bu yüzden mevcut çalısmada, saflastırılmamıs enzim ekstraktlarında spesifik olmayan fosfataz aktiviteleri, substrat olarak p-nitrofenil fosfatın kullanılmasıyla tayin edilmis ve dolayısıyla 5’-nükleotidaz aktivitesi de, ilk defa, fosfatazların aktivitesinin de dikkate alınmasıyla dogru olarak belirlenmistir

Yüksek bitkilerde 5' nükleotidaz aktivitesinin geliştirilmiş bir yöntemle tayini

The presence of relatively high non-specific phosphatase activities are known in various plant tissues. These enzymes also catalyze the removal of inorganic phosphate from nucleoside monophosphates. According to published reports, so far, the experimental investigations, concerning the 5’-nucleotidase activity, have been mostly carried out without consideration of the non-specific phosphatase activities in crude enzymic extracts. However, few researchers have been included some inhibitors of these phosphatases, such as $NaMoO_4$ or KF, in assay mixtures. But phosphatases are not completely inhibited by these inhibitors and, therefore, interfere the activity of 5’-nucleotidase. Thus, the non-specific phosphatase activities were determined in crude enzymic extracts by using p-nitrophenyl phosphate as substrate and the apparent 5’-nucleotidase activity was, first time, corrected accordingly in this present work.

___

  • 1.Poly, G. M. Regulation of a plant 5’(3’)-ribonucleotide phosphohydrolyse by cyclic nucleotides and pyrimidine,purine, and cytokinin ribosides. Proc. Natl. Acad. Sci. 71: 1299-1303, 1974.
  • 2.Poly, G. M. Purification and characterization of a cyclic nucleotide-regulated 5’-nucleotidase from potato.Biochimica et Biophysica Acta. 384: 443-457, 1975.
  • 3.Chen, C. M. and Kristopeit, S. M. Metabolism of cytokinin. Dephosphorilation of cytokinin ribonucleotide by 5’-nucleotidases from wheat germ cytosol. Plant physiol. 67: 494-498, 1981.
  • 4.Carter, S. G. and Tipton, C. L. Purification and characterization of a 5’-nucleotidase from Zea mays microsomes.Phytochem. 25: 33-37, 1986.
  • 5.Christensen, T.M.I.E. and Jochimsen, B. U. Enzymes of ureide synthesis in pea and soybean. Plant physiol. 72:56-59, 1983.
  • 6.Amarjit and Singh, R. Properties of 5’-nucleotidase from nodules of pigeonpea (Cajanus cajan). Phytochem. 25:2267-2270, 1986.
  • 7.østergaard, J., Larsen, K. and Jochimsen, B. U. 5’-Nucleotidase from soybean (Glycine max) root nodules. Partialpurification and characterization. Regulation in sterile tissue culture. J. Plant Physiol. 138: 387-393, 1991.
  • 8.LeBel, D., Poirier, G. G. and Beaudoin, A. R. A convenient method for the ATPase assay. Anal. Biochem. 85: 86-89, 1978.
  • 9.Bradford, M. M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the prin-ciple of protein-dye binding. Anal. Biochem. 72: 248-254, 1976.
  • 10.Ashworth, T. S., Brown, E. G. and Roberts, F. M. Biosynthesis of willardiine and isowillardiine in germinating peaseeds and seedlings. Biochem. J. 129: 897-905, 1972.
  • 11.Murakoshi, I., Ikegami, F., Ookawa, N., Ariki, T., Haginiwa, J., Kuo, Y. H. and Lambein, F. Biosynthesis of the uraci-lylalanines willardiine and isowillardiine in higher plants. Phytochem. 17: 1571-1576, 1978.
  • 12.Ahmmad, M. A. S., Maskall, C. S. and Brown, E. G. Partial purification and properties of willardiine and isow-illardiine synthase activity from Pisum sativum. Phytochem. 23:265-270, 1984.
  • 13.Brown, E. G. and Al-Baldawi, N. F. Biosynthesis of the pyrimidinyl amino acid lathyrine by Lathyrus tingitanus L.Biochem. J. 164: 589-594, 1977.
  • 14.Brown, E. G. and Mohamad, J. Biosynthesis of lathyrine; A novel synthase activity, Phytochem. 29: 3117-3121,1990.
  • 15.Brown, E. G. and Turan, Y. Pyrimidine metabolism and secondary product formation; Biogenesis of albizziine, 4-hydroxyhomoarginine and 2,3-diaminopropanoic acid. Phytochem. 40: 763-771, 1995.
  • 16.Brown, E. G. and Turan, Y. Formation of albizziine and 2,3-diaminopropanoic acid from uracil in Albizia seedlings.Phytochem. 41: 1491-1495, 1996.
  • 17.Turan, Y.: Pyrimidine Primary and Secondary Metabolism in Plants. PhD thesis, University of Wales Swansea, UK.1995