Changes in antioxidative enzymes of young and mature leaves of tomato seedlings under drought strees

Kuraklık stresine maruz bırakılan 4 haftalık Lycopersicon esculentum Mili. cv. Ailsa Craig (AC) and absisik asit (ABA) mutantı notabilis'm genç ve olgun yapraklarında antioksidant enzimler üzerine ABA uygulamasının etkisi incelendi. ABA kuraklık stresi uygulanan notabilis'm genç yapraklarında askorbat peroksidaz (AP), glutatyon reduktaz (GR) ve katalaz (KAT) aktivitelerini arttırırken, Ailsa Craig'in genç ve olgun yapraklarında KAT aktivitesi değişmemiştir. Bütün uygulamalarda notabilis ve Ailsa Craig'de superoksit dismutaz (SOD) aktivitesinde belirgin bir değişiklik olmamıştır. Notabilis'm ABA, kuraklık ve kuraklık-ABA uygulanan genç yapraklarında APX aktivitesi belirgin bir şekilde artmıştır. Bu sonuçlar kuraklık stresi ve ABA uygulanan yapraklarda antioksidant enzim aktivitelerinin ABA içeriğine bağlı olarak üretilen aktif oksijen türleri (A0T) ile değişebileceğini ve yaprakların gelişim evrelerinin kuraklığa maruz bırakılan bitkilerde oksidatif hasarın farklı şekilde önlenmesine katılabileceğini göstermektedir.

Kuraklık stresi altındaki domates fidelerinin genç ve olgun yapraklarının antioksidant enzimlerindeki değişiklikler

The effects of exogenous abscisic acid (ABA) on antioxidant enzymes of young and mature leaves of 4-week old Lycopersicon esculentum cv. Ailsa Craig and ABA-deficient mutant, notabilis, were investigated under drought stress. Although ABA induced increases in ascofbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) activities in drought-stressed young leaves of notabilis, CAT activities remained unchanged in both ABA-treated young and mature leaves of Ailsa Craig under drought. Superoxide dismutase (SOD) activity did not substantially increase in notabilis or Ailsa Craig in all treatments. APX activity significantly increased in ABA-, drought- and drought+ABA- treated young leaves of notabilis. These results indicated that the antioxidant enzyme activities in drought-stressed and ABA-treated leaves might change with the production of active oxygen species (AOS) depending on the ABA content, and the developmental stages of leaves might contribute to the differential prevention of oxidative damage in plants exposed to drought.

___

  • 1. Guan L, Zhao J, Scandalios JG. Cis-elements and trans-factors that regulate expression of maize Catl antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22: 87- 95, 2000.
  • 2. Jiang M, Zhang J. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defence in leaves of maize seedlings. Planta 215: 1022-1030,2002.
  • 3. Synkova H, Pospisilova J. In vitro precultivation of tobacco affects the response of antioxidative enzymes to ex vitro acclimation. J Plant Physiol 159: 781 -789, 2002.
  • 4. Mulholland BJ, Taylor IB, Jackson AC, Thompson AJ. Can ABA mediate responses of salinity stressed tomato. Environmental and Experimental Botany 50: 17-28, 2003.
  • 5. Zhang X, Zhang L, Dong F et al. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiology 126: 1438-1448, 2001.
  • 6. Guan L, Scandalios JG. Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes. Physiologia Plantarum 104: 413- 422, 1998.
  • 7. Makela P, Munns R, Comer TD et al. Growth of tomato and an ABA-deficient mutant (sitiens) under saline conditions. Physiologia Plantarum 117: 58-63, 2003.
  • 8. Thompson AJ, Thorne ET, Burbidge A et al. Complementation of notabilis, an abscisic acid-deficient mutant of tomato: importance of sequence context and utility of partial complementation. Plant Cell and Environment 27: 459-471, 2004.
  • 9. Van der Mescht A, De Ronde JA, Rose FT. Cu/Zn superoxide dismutase, glutathione reductase and ascorbate. South African J Sci 94: 496-409, 1998.
  • 10. Shigeoka S, Ishikawa T, Tamoi M et al. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53: 1305-1319, 2002.
  • 11. Tewari RK, Kumar P, Sharma PN et al. Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci 162: 381- 388, 2002.
  • 12. Van Heerden PDR, Krüger GHJ. Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. J Plant Physiol 159: 1077-1086, 2002.
  • 13. Rubio MC, Gonzalez EM, Minenin FR et al. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiologia Plantarum 115:531-540,2002.
  • 14. Hernandez JA, Almansa MS. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum 115: 251-257, 2002.
  • 15. Broetto F, Lüttge U, Ratajczak R. Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum. Func Plant Biol 29: 13-23, 2002.
  • 16. Bor M, Özdemir F, Türkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science 164: 77-84,2003.
  • 17. Sharp RE. Interaction with ethylene: changing views on the role of absicisic acid in root and shoot growth responses to water stress. Plant Cell Environment 25: 211-222, 2002.
  • 18. Neill SJ, Horgan R. Abscisic acid production and water relations in wilty tomato mutants subjected to water deficiency. J Exp Bot 36: 1222-1231, 1985.
  • 19. Keleş Y, Ünyayar S. Responses of antioxidant defence system of Helianthus annuus to abscisic acid treatment under drought and waterlogging. Acta Physiologiae Plantarum 26: 149-156, 2004.
  • 20. Beyer WF, Fridowich I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal Biochem 161: 559-566, 1987.
  • 21. Aebi HE. Catalase. In: methods of enzymatic analysis, Bergmeyer J, Grabi M, Eds. Verlag Chemie. Weinheim 3: 273-286, 1983.
  • 22. Carlberg I, Mannervik B. Glutathione reductase. Methods in Enzymology 113: 484-490, 1985.
  • 23. Vanaker H, Carver TL, Foyer CH. Patogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117: 1103-1114, 1998.
  • 24. Bonnet M, Caniares 0, Veisseire P. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne I. cv Apollo). J Exp Bot 51: 945-953, 2000.
  • 25. Jiang M, Zhang J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell and Environment 26: 929-939, 2003.
  • 26. Bueno P, Piqueras A, Kurepa J et al. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Science 138: 27-34, 1998.
  • 27. Fink RC, Scandalios JG. Molecular evolution and structure- function relationships of the superoxide dismutase gene families in Angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Archives of Biochemistry and Biophysics 399: 19-36, 2002
  • 28. Ünyayar S, Aktoklu E, Büyükaşık Y. The responses to exogenous abscisic acid of the roots of notabilis and wild-type tomato under drought stress, Israel Journal of Plant Science, 52: 294-299, 2004.
  • 29. Jung S. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Science 166:459-466,2004.
  • 30. Keleş Y, Öncel I. Response of antioxidative defense system to temperature and water stress combinations in wheat seedlings. Plant Science 163: 783-790, 2002.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK