Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest

As the underlying pathogen for the COVID-19 pandemic that has affected tens of millions of lives worldwide, SARS-CoV-2 and its mutations are among the most urgent research topics worldwide. Mutations in the virus genome can complicate attempts at accurate testing or developing a working treatment for the disease. Furthermore, because the virus uses its own proteins to replicate its genome, rather than host proteins, mutations in the replication proteins can have cascading effects on the mutation load of the virus genome. Due to the global, rapidly developing nature of the COVID-19 pandemic, local demographics of the virus can be difficult to accurately analyze and track, disproportionate to the importance of such information. Here, we analyzed available, high-quality genome data of SARS-CoV-2 isolates from Turkey and identified their mutations, in comparison to the reference genome, to understand how the local mutatome compares to the global genomes. Our results indicate that viral genomes in Turkey has one of the highest mutation loads and certain mutations are remarkably frequent compared to global genomes. We also made the data on Turkey isolates available on an online database to facilitate further research on SARS-CoV-2 mutations in Turkey.

___

  • Ayub MI, 2020, REPORTING 2 SARS COV, DOI [10.20944/preprints202004.0337.v1, DOI 10.20944/PREPRINTS202004.0337.V1]
  • Chan JFW, 2020, LANCET, V395, P514, DOI 10.1016/S0140-6736(20)30154-9
  • Daniloski Zharko, 2020, bioRxiv, DOI 10.1101/2020.06.14.151357
  • Deng W, 2020, SCIENCE, V369, P818, DOI 10.1126/science.abc5343
  • Elbe S, 2017, GLOB CHALL, V1, P33, DOI 10.1002/gch2.1018
  • Eskier D, 2020, BIORXIV, DOI [10.1101/2020.08.12.248732, DOI 10.1101/2020.08.12.248732]
  • Eskier D, 2020, PEERJ, V8, DOI 10.7717/peerj.9703
  • Eskier D, 2020, PEERJ, V8, DOI 10.7717/peerj.9587
  • Grifoni A, 2020, CELL, V181, P1489, DOI 10.1016/j.cell.2020.05.015
  • Hachim A, 2020, NAT IMMUNOL, V21, P1293, DOI 10.1038/s41590-020-0773-7
  • Hadfield J, 2018, BIOINFORMATICS, V34, P4121, DOI 10.1093/bioinformatics/bty407
  • Hue S, 2020, AM J RESP CRIT CARE, V202, P1509, DOI 10.1164/rccm.202005-1885OC
  • Jungreis Irwin, 2020, bioRxiv, DOI 10.1101/2020.06.02.130955
  • Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436
  • Kirchdoerfer RN, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-10280-3
  • Kochi AN, 2020, J CARDIOVASC ELECTR, V31, P1003, DOI 10.1111/jce.14479
  • Korber B, 2020, CELL, V182, P812, DOI 10.1016/j.cell.2020.06.043
  • Lee IC, 2020, J CHIN MED ASSOC, V83, P521, DOI 10.1097/JCMA.0000000000000319
  • Li YC, 2020, J MED VIROL, V92, P552, DOI 10.1002/jmv.25728
  • MacLean OA, 2020, NATURAL SELECTION EV, DOI [10.1101/2020.05.28.122366, DOI 10.1101/2020.05.28.122366]
  • McBride R, 2014, VIRUSES-BASEL, V6, P2991, DOI 10.3390/v6082991
  • Pachetti M, 2020, J TRANSL MED, V18, DOI 10.1186/s12967-020-02344-6
  • Page AJ, 2016, MICROB GENOMICS, V2, DOI 10.1099/mgen.0.000056
  • Peng Q, 2020, CELL REP, V31, DOI 10.1016/j.celrep.2020.107774
  • Riou J, 2020, EUROSURVEILLANCE, V25, P7, DOI 10.2807/1560-7917.ES.2020.25.4.2000058
  • Romano M, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9051267
  • Sagulenko P, 2018, VIRUS EVOL, V4, DOI 10.1093/ve/vex042
  • Simmonds P, 2020, BIORXIV, DOI [10.1101/2020.05.01.072330, DOI 10.1101/2020.05.01.072330]
  • Subissi L, 2014, P NATL ACAD SCI USA, V111, pE3900, DOI 10.1073/pnas.1323705111
  • Tillett RL, 2021, LANCET INFECT DIS, V21, P52, DOI 10.1016/S1473-3099(20)30764-7
  • Tylor S, 2009, CAN J MICROBIOL, V55, P254, DOI [10.1139/W08-139, 10.1139/w08-139]
  • Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  • Wong J, 2020, INFLUENZA OTHER RESP, V14, P596, DOI 10.1111/irv.12767
  • Yin CC, 2020, GENOMICS, V112, P3588, DOI 10.1016/j.ygeno.2020.04.016
  • Zhu H, 2020, CURR CARDIOL REP, V22, DOI 10.1007/s11886-020-01292-3