Effects of bradykinin on proliferation, apoptosis, and cycle of glomerular mesangial cells via the TGF-beta 1/Smad signaling pathway

We aimed to assess the effects of bradykinin (BK) on the proliferation, apoptosis, and cycle of glomerular mesangial cells via the transforming growth factor-beta 1 (TGF-beta 1)/Smad signaling pathway. Rat glomerular mesangial cells, HBZY-1, were divided into normal group (untreated), model group (5 ng/L TGF-beta 1), BK group (5 ng/L TGF-beta 1 + 1 ng/L BK), and inhibitor group [5 ng/L TGF-beta 1 + 1 ng/L LY2109761 (TGF-beta 1-specific inhibitor)]. The cell proliferation, cycle, apoptosis, expression of type I collagen (Col-1), and protein expressions of Col-1, TGF-beta 1, and phosphorylated Smad2 (p-Smad2) were detected by EdU labeling, flow cytometry, acridine orange/ethidium bromide (AO/EB) dual staining, immunofluorescence assay, and Western blotting, respectively. Compared with the normal group, the cell proliferation rate (P = 0.02) and protein expression levels of Col-1 (P = 0.02), TGF-beta 1 (P = 0.01), p-Smad2 (P = 0.02), and p-Smad7 (P = 0.00) in the model group significantly increased, and apoptosis rate (P = 0.01) significantly decreased. Compared with the model group, the BK and inhibitor groups significantly decreased in proliferation rate (P = 0.01) and protein expression levels of Col-1 (P = 0.01), TGF-beta 1 (P = 0.01), and p-Smad2 (P = 0.00). Also, they were significantly elevated in apoptosis rate (P = 0.02) and p-Smad7 protein expression (P = 0.02). BK regulates the proliferation, apoptosis, and the cycle of glomerular mesangial cells by inhibiting the TGF-beta 1/Smad signaling pathway.

___

  • Catalan M, 2019, MOL BIOL REP, V46, P5197, DOI 10.1007/s11033-019-04977-3
  • Cheng X, 2019, NEPHROL DIAL TRANSPL, V34, P242, DOI 10.1093/ndt/gfy107
  • Cui K, 2017, ASIAN J ANDROL, V19, P67, DOI 10.4103/1008-682X.189209
  • Deres L, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00624
  • Fahmy SR, 2019, TOXICOL LETT, V301, P73, DOI 10.1016/j.toxlet.2018.11.006
  • Hsieh CC, 2018, STEM CELL RES THER, V9, DOI 10.1186/s13287-018-0915-0
  • Acuna MJ, 2018, J CELL COMMUN SIGNAL, V12, P589, DOI 10.1007/s12079-017-0439-x
  • Kim YM, 2008, CELL SIGNAL, V20, P1882, DOI 10.1016/j.cellsig.2008.06.021
  • Kocer G, 2018, NEPHRON, V139, P299, DOI 10.1159/000489506
  • Lee EJ, 2018, NUTRIENTS, V10, DOI 10.3390/nu10070882
  • Liu HF, 2018, ACTA PHARMACOL SIN, V39, P222, DOI 10.1038/aps.2017.87
  • Ma LB, 2018, INT UROL NEPHROL, V50, P373, DOI 10.1007/s11255-017-1757-x
  • Metz GE, 2019, BIOTECH HISTOCHEM, V94, P115, DOI 10.1080/10520295.2018.1521989
  • Nguyen C, 2019, CLIN KIDNEY J, V12, P232, DOI 10.1093/ckj/sfy068
  • Nokkari A, 2018, PROG NEUROBIOL, V165, P26, DOI 10.1016/j.pneurobio.2018.01.003
  • Pereira AV, 2010, ARCH IMMUNOLOGIAE TH, V68, P3
  • Qin L, 2019, ARTHRITIS RES THER, V21, DOI 10.1186/s13075-018-1774-x
  • Shi JX, 2018, CHINESE J CLIN PHARM, V264, P42
  • Song Y, 2017, INT IMMUNOPHARMACOL, V44, P115, DOI 10.1016/j.intimp.2017.01.008
  • Wang Y, 2014, MOL CELL ENDOCRINOL, V382, P979, DOI 10.1016/j.mce.2013.11.018
  • Wei QQ, 2018, MOL MED REP, V17, P5878, DOI 10.3892/mmr.2018.8556
  • Weng YZ, 2019, INT J MOL MED, V44, P927, DOI 10.3892/ijmm.2019.4260
  • Wu R, 2018, METABOLISM, V83, P18, DOI 10.1016/j.metabol.2018.01.002
  • Zhang HL, 2019, BIOMED PHARMACOTHER, V113, DOI 10.1016/j.biopha.2019.108705
  • Zhang S, 2019, EUR J PHARMACOL, V845, P74, DOI 10.1016/j.ejphar.2018.12.033
  • Zhu LP, 2018, BIOL RES, V51, DOI 10.1186/s40659-018-0157-8
  • Zhu Y, 2019, EUR REV MED PHARMACO, V23, P5535, DOI 10.26355/eurrev_201907_18286