Salt stress by NaCl alters the physiology and biochemistry of tissue culture-grown Stevia rebaudiana Bertoni

Salt stress by NaCl alters the physiology and biochemistry of tissue culture-grown Stevia rebaudiana Bertoni

This study reports the response to salinity stress (100 mM, 200 mM, and 300 mM NaCl concentration) exposure of thecommercially valuable medicinal plant Stevia rebaudiana during micropropagation for 4 weeks. The significant enhancement ofphysiological parameters, steviol glycosides (SGs), i.e. rebaudioside A and stevioside, as examined by high-performance liquidchromatography, and nonenzymatic antioxidant activities, i.e. total phenolic content, total flavonoid content, total antioxidant capacity,total reducing power, and DPPH-free radical scavenging activity, was observed during the shoot formation process under up to 100mM NaCl stress. Callus formation produced similar results regarding physiology and antioxidant assays, except that it producedmerely a negligible amount of SGs. Contrarily, root formation showed marked susceptibility to 100 mM, 200 mM, and 300 mM NaClconcentrations and reduced growth parameters, sweetening compounds, and secondary metabolites. Hence, NaCl plays the role ofabiotic stress elicitor, causing accumulation of reactive oxygen species and thus altering metabolic processes and physiology of Steviaunder in vitro culture conditions.

___

  • Badran AE, Alhady MRAA, Hassan WA (2015). In vitro evaluation of some traits in Stevia rebaudiana (Bertoni) under drought stress and their relationship on stevioside content. Am J Plant Sci 6: 746-752.
  • Bondarev N, Reshetnyak O, Nosov A (2003). Effects of nutrient medium composition on development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides. Plant Sci 165: 845-850.
  • Bopp BA, Price P (2001). Alternative sweeteners. In: O’Brien NL, editor. Cyclamate. Revised and Expanded. 3rd ed. New York, NY, USA: Marcel Dekker, pp. 63-85.
  • Cantabella D, Piqueras A, Acosta-Motos JR, Bernal-Vicente A, Hernandez JA, Diaz-Vivancos P (2017). Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem 115: 484-496.
  • Dey A, Kundu S, Bandyopadhyay A, Bhattacharjee A (2013). Efficient micropropagation and chlorocholine chloride induced stevioside production of Stevia rebaudiana Bertoni. CR Biol 336: 17-28.
  • Fallah F, Nokhasi F, Ghaheri M, Kahrizi D, Beheshti Ale Agha A, Ghorbani T, Kazemi E, Ansarypour Z (2017). Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cell Mol Biol 63: 102-106.
  • Gupta P, Sharma S, Saxena S (2014). Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for steviol glycoside production. Appl Biochem Biotechnol 172: 2894-2906
  • Gupta P, Sharma S, Saxena S (2016). Effect of abiotic stress on growth parameters and steviol glycoside content in Stevia rebaudiana (Bertoni) raised in vitro. J Appl Res Med Aromat Plants 3: 160- 167.
  • Haq IU, Ullah N, Bibi G, Kanwal S, Sheraz AM, Mirza B (2012). Antioxidant and cytotoxic activities and phytochemical analysis of Euphorbia wallichii root extract and its fractions. Iran J Pharma Res 11: 241-249.
  • Hussin S, Geissler N, El-Far MMM, Koyro H-W (2017). Effects of salinity and short-term elevated atmospheric CO2 on the chemical equilibrium between CO2 fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni. Plant Physiol Biochem 118: 178-186.
  • Jafri L, Saleem S, Ihsan HU, Ullah N, Mirza B (2014). In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch. Arab J Chem 10: S3699-S3706.
  • Javed R, Mohamed A, Yucesan B, Ekrem G, Kausar R, Zia M (2017a). CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell Tissue Organ Cult 131: 611-620.
  • Javed R, Usman M, Yucesan B, Zia M, Gurel E (2017b). Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110: 94-99.
  • Javed R, Yucesan B, Gurel E (2017c). Hydrogen peroxide-induced steviol glycosides accumulation and enhancement of antioxidant activities in leaf tissues of Stevia rebaudiana Bertoni. Sugar Tech 20: 100-104.
  • Javed R, Yucesan B, Zia M, Gurel E (2017d). Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech 20: 194-201.
  • Javed R, Zia M, Yucesan B, Gurel E (2017e). Abiotic stress of ZnOPEG, ZnO-PVP, CuO-PEG and CuO-PVP nanoparticles enhance growth, sweetener compounds and antioxidant activities in shoots of Stevia rebaudiana Bertoni. IET Nanobiotechnol 11: 898-902.
  • Khalil SA, Zamir R, Ahmad N (2014). Selection of suitable propagation method for consistent plantlets production in Stevia rebaudiana Bertoni. Saudi J Biol Sci 21: 566-573.
  • Liu J, Kao P, Chan P, Hsu Y, Hou C, Lien G, Cheng J (2003). Mechanism of the antihypertensive effect of stevioside in anesthetized dogs. Pharmacology 67: 14-20.
  • Mubarak MH, Belal AH, El Dein TN, El Sarag EI (2012). In vitro response Stevia rebaudiana growth under salinity and drought stress. El Minia, Egypt: Minia International Conference for Agriculture and Irrigation in the Nile Basin Countries. Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.
  • Pandey M, Chikara SK (2014). In vitro regeneration and effect of abiotic stress on physiology and biochemical content of Stevia rebaudiana Bertoni. J Plant Sci Res 1: 113.
  • Pandey M, Chikara SK (2015). Effect of salinity and drought stress on growth parameters, glycoside content and expression level of vital genes in steviol glycosides biosynthesis pathway of Stevia rebaudiana (Bertoni). Int J Genet 7: 153-160.
  • Rafiq M, Dahot MU, Mangrio SM, Naqvi HA, Qarshi IA (2007). In vitro clonal propagation and biochemical analysis of field established Stevia rebaudiana Bertoni. Pak J Bot 39: 2467-2474.
  • Rathore S, Singh N, Singh SK (2014). Influence of NaCl on biochemical parameters of two cultivars of Stevia rebaudiana regenerated in vitro. J Stress Physiol Biochem 10: 287-296.
  • Sekihashi K, Saitoh H, Sasaki Y (2002). Genotoxicity studies of stevia extract and steviol by the comet assay. J Toxicol Sci 27: 1-8.
  • Shahverdi MA, Omidi H, Tabatabaei SJ (2017). Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: Growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. J Saudi Society Agric Sci (in press). Sivaram L, Mukundan U (2003). In vitro culture studies on Stevia rebaudiana. In Vitro Cell Develop Biol-Plant 39: 520-523.
  • Soejarto D (2002). Botany of Stevia and Stevia rebaudiana. In: Kinghorn AD, editor. Stevia: The Genus Stevia. London, UK: Taylor & Francis, pp. 18-39.
  • Soufi S, D’Urso G, Pizza C, Rezgui S, Bettaieb T, Montoro P (2016). Steviol glycosides targeted analysis in leaves of Stevia rebaudiana (Bertoni) from plants cultivated under chilling stress conditions. Food Chem 190: 572-580.
  • Tadhani MB, Patel VH, Subhash R (2007). In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J Food Comp Anal 20: 323-329.
  • Thiyagarajan M, Venkatachalam P (2012). Large scale in vitro propagation of Stevia rebaudiana (Bert) for commercial application: pharmaceutically important and antidiabetic medicinal herb. Ind Crops Prod 37: 111-117.
  • Wölwer-Rieck U (2012). The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: a review. J Agric Food Chem 60: 886-895.
  • Zeng J, Chen A, Li D, Yi B, Wu W (2013). Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. J Agric Food Chem 61: 5720-5726.