QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing

QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing

Lentil, Lens culinaris Medic., is an important cool season grain legume because of the high level of iron (Fe) in its seedssince Fe deficiency is widespread and causes anemia. Thus, identifying genes controlling Fe concentration in the seed was needed formapping in the lentil genome. The objectives of this study were to (i) detect phenotypic variation in Fe concentration in the seeds ofa recombinant inbred line (RIL) population, (ii) construct a high-density linkage map using genotyping by sequencing (GBS), and(iii) identify localization of the quantitative trait loci (QTLs) controlling genes for Fe concentration in lentil seeds. In this work, Feconcentration in seeds of the RIL population ranged from 37.2 to 175.7 mg per kg. A linkage map was constructed covering 497.1 cMwith a total of 4177 SNP markers. A total of 21 QTL regions explaining 5.9%–14.0% of the phenotypic variation were identified on sixlinkage groups (LG1, 2, 4, 5, 6, and 7) with LOD scores ranging from 3.00 to 4.45. This is the first report on the construction of a highdensity linkage map through GBS and mapping of QTLs controlling iron uptake in lentil. Identification of these genomic regions will beuseful for future biofortification studies to develop new varieties of lentil with high Fe concentrations.

___

  • Acikgoz N, Ilker E, Gokcol A (2004). Analysis of biological research data in computer. İzmir, Turkey: Ege University Press.
  • Adlerova L, Bartoskova A, Faldyna M (2008). Lactoferrin: a review. Vet Med 53: 457- 468.
  • Agarwal M, Shrivastava N, Padh H (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27: 617-631.
  • Alghamdi SS, Khan AM, Ammar MH, El-Harty EH, Migdadi HM, Abd El-Khalik SM, Al-Shameri AM, Javed MM, Al-Faifi SA (2014). Phenological, nutritional and molecular diversity assessment among 35 introduced lentil (Lens culinaris Medik.) genotypes grown in Saudi Arabia. Int J Mol Sci 15: 277-295.
  • Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES (2000). An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407: 513-516.
  • Anuradha K, Agarwal S, RaoYV, Rao KV, Viraktamath BC, Sarla N (2012). Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar x Swarna RILs. Gene 508: 233-240.
  • Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007). Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agric Food Chem 55: 7950-7956.
  • Arrendo M, Nunez MT (2005). Iron and copper metabolism. Mol Aspects Med 26: 313-327.
  • Arumuganathan K, Earle ED (1991). Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9: 208-218.
  • Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, DillaErmita CJ, Tung CW, McCouch S, Thomson M, Mauleon R et al. (2013). Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6: 11.
  • Bastien M, Sonah H, Belzile F (2014). Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome 7: 1-13.
  • Beard JL (2001). Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131: 568-580.
  • Bingham FT (1949). Soil test for phosphate. Calif Agr 3: 11-14.
  • Black CA (1965). Methods of Soil Analysis. Part 2. Madison, WI, USA: American Society of Agronomy.
  • Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE (2009). Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23: 197-207.
  • Blair MW, Astudillo C, Rengifo J, Beebe SE, Graham R (2011). QTL analyses for seed iron and zinc concentrations in an intragenepool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122: 511-521.
  • Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE, Machado G, Graham R (2010). QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121: 1059-1070.
  • Bouyoucos G (1955). A recalibration of the hydrometer method for making mechanical analysis of the soils. Agron J 4: 419-434.
  • Burckhardt-Herold S (2013). Iron metabolism. http://acac1.ethz. ch/koppenol/ IRON_Metabolism_2013_A.pdf. Accessed 15 March 2016.
  • Cazzola M, Bergamaschi G, Dezza L, Arosio P (1990). Manipulations of cellular iron metabolism for modulating normal and malignant cell proliferation: achievements and prospects. Blood 75: 1903-1919.
  • Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014). An ultra-high-density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics 15: 433.
  • Churchill GA, Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.
  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009). QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49: 1742-1750.
  • Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Goze E, Kilian A et al. (2013). Genome-wide association mapping of root traits in a japonica rice panel. PLoS ONE 8: e78037.
  • Cruz VM, Kilian A, Dierig DA (2013). Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS One 8: e64062.
  • De la Puente R, García P, Polanco C, Perez de la Vega M (2013). Short communication. An improved intersubspecific genetic map in Lens including functional markers. Span J Agric Res 11: 132- 136.
  • Deschamps S, Llaca V, May GD (2012). Genotyping-by-sequencing in plants. Biology 1: 460-483.
  • Ding G, Yang M, Hu Y, Liao Y, Shi L, Xu F, Meng J (2010). Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann Bot 105: 1221-1234.
  • Duran Y, Fratini R, Garcia P, Perez de la Vega M (2004). An intersubspecific genetic map of Lens. Theor Appl Genet 108: 1265-1273.
  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011). A robust, simple genotyping-bysequencing (GBS) approach for high diversity species. PLoS ONE 6: e19379.
  • Eujayl I, Baum M, Powell W, Erskine W, Pehu E (1998). A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97: 83-89.
  • Food and Agriculture Organization of the United Nations: 2014 world production statistics for lentils. http://faostat3.fao.org/ browse/Q/QC/E (2014). Accessed 20 Feb 2016.
  • Ford R, Rubeena, Redden RJ, Materne M, Taylor PWJ (2007). Lentil. In: Kole C, editor. Genome Mapping and Molecular Breeding in Plants. Volume 3. Pulses, Sugar and Tuber Crops. Berlin, Germany: Springer, pp. 91-108.
  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009). Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51: 84-92.
  • Gardner KM, Brown P, Cooke TF, Cann S, Costa F, Bustamante C, Velasco R, Troggio M, Myles S (2014). Fast and cost-effective genetic mapping in apple using next- generation sequencing. G3 (Bethesda) 4: 1681-1687.
  • Garvin DF, Welch RM, Finley JW (2006). Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agr 86: 2213-2220.
  • Gore MA, Fang DD, Poland JA, Zhang J, Percy RG, Cantrell RG, Thyssen G, Lipka AE (2014). Linkage map construction and QTL analysis of agronomic and fiber quality traits in cotton. Plant Genome 7: 1-10.
  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000). Breeding for trace mineral density in rice. Food Nutr Bull 21: 382-386.
  • Grusak MA (2009). Nutritional and health-beneficial quality. In: Erskine W, Muehlbauer F, Sarker A, Sharma B, editors. The Lentil: Botany, Production and Uses. Oxford, UK: CABI, pp. 368-390.
  • Grusak MA, Cakmak I (2005). Methods to improve the crop-delivery of minerals to humans and livestock. In: Broadley MR, White PJ, editors. Plant Nutritional Genomics. Oxford, UK: Wiley, pp. 265-286.
  • Gujaria-Verma N, Vail SL, Carrasquilla-Garcia N, Penmetsa RV, Cook DR, Farmer AD, Vandenberg A, Bett KE (2014). Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of medicago and chickpea. Front Plant Sci 5: 676.
  • Gupta M, Verma B, Kumar N, Chahota RK, Rathour R, Sharma SK, Bhatia S, Sharma TR (2012). Construction of intersubspecific molecular genetic map of lentil based on ISSR, RAPD and SSR markers. J Genet 91: 279-287.
  • Hamwieh A, Udupa SM, Choumane W, Sarker A, Dreyer F, Jung C, Baum M (2005). A genetic linkage map of Lens spp. based on microsatellite and AFLP markers and the localization of Fusarium vascular wilt resistance. Theor Appl Genet 110: 669- 677.
  • He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014). Genotyping by sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5: 484.
  • Huang YF, Poland JA, Wight CP, Jackson EW, Tinker NA (2014). Using genotyping-by- sequencing (GBS) for genomic discovery in cultivated oat. PLoS ONE 9: e102448.
  • Iannotti LL, Tielsch JM, Black MM, Black RE (2006). Iron supplementation in early childhood: health benefits and risks. Am J Clin Nutr 84: 1261-1276.
  • Institute of Medicine (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington, DC, USA: Food and Nutrition Board National Academy Press.
  • Islam FMA, Basford KE, Jara C, Redden RJ, Beebe S (2002). Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49: 285-293.
  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PB, Nguyen H, Sutton T, Varshney RK (2015). Genotyping-by-sequencing based intra-specific genetic map refines a ‘’QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290: 559-571.
  • Jin T, Zhou J, Chen J, Zhu L, Zhao Y, Huang Y (2013). The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63: 317-324.
  • Kacar B (1972). The Chemical Analyses of Plant and Soil: II. Plant Analyses. Ankara, Turkey: Ankara University Press.
  • Kacar B, Inal A (2008). Plant Analyses. Ankara, Turkey: Ankara University Press.
  • Karakoy T, Erdem H, Baloch FS, Toklu F, Eker S, Kilian B, Ozkan H (2012). Diversity of macro and micronutrients in the seeds of lentil landraces. Sci World J doi:10.1100/2012/710412.
  • Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, HellerUszynska K, Jaccoud D, Hopper C et al. (2012). Diversity Arolives Technology: a generic genome profiling technology on open platforms. Meth Mol Biol 888: 67-89.
  • Klein MA, Grusak MA (2009). Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus. Genome 52: 677-691.
  • Kosambi DD (1943). The estimation of map distance from recombination values. Ann Eugen 2: 172-175.
  • Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S et al. (2015). Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6: 162.
  • Kumar S, Banks TW, Cloutier S (2012). SNP discovery through nextgeneration sequencing and its applications. Int J Plant Genom doi:10.1155/2012/831460.
  • Lander ES, Botstein D (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185- 199.
  • Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Wang T, Li Y (2015). Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE 10: e0121624.
  • Lieu PT, Heiskala M, Peterson PA, Yang Y (2001). The roles of iron in health and disease. Mol Aspects Med 22: 1-87.
  • Linsday WL, Norvell WA (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42: 421-428.
  • Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, Ramsay L, Hedley PE, Waugh R (2014). An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics 15: 104.
  • Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon RJ, Li J (2013). A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE 8: e83052.
  • Lu K, Li L, Zheng X, Zhang Z, Mou T, Hu Z (2008). Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet 87: 305-310.
  • Mascher M, Wu S, Amand PS, Stein N, Poland J (2013). Application of genotyping-by- sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8: e76925.
  • Metzker ML (2010). Sequencing technologies – the next generation. Nat Rev Genet 11: 31-46.
  • Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Özturk L, Çakmak I (2007). Iron and zinc grain density in common wheat grown in central Asia. Euphytica 155: 193-203.
  • Moritz A, Hornecker J (2006). Simple Steps to Total Health. Brevard, NC, USA: Ener-Chi Wellness Press.
  • Muehlbauer FJ, McPhee KE (2005). Lentil (Lens culinaris Medik.). In: Singh RJ, Jauhar PP, editors. Genetic Resources, Chromosome Engineering and Crop Improvement. New York, NY, USA: CRC Press, pp. 219-230.
  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010). Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329: 139-153.
  • Oikeh SO, Menkir A, Maziya-Dixon B, Welch R, Glahn RP (2003). Genotypic differences in concentration and bioavailability of kernel-iron in tropical maize varieties grown under field conditions. J Plant Nutr 26: 2307-2319.
  • Oury FX, Leenhardt F, Rémésy C, Chanliaud E, Duperrier B, Balfourier F, Charmet G (2006). Genetic variability and stability of grain magnesium, zinc and iron concentration in bread wheat. Eur J Agron 25: 177-185.
  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009). Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat x wild emmer wheat RIL population. Theor Appl Genet 119: 353-369.
  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7: e32253.
  • Pratt PF (1965). Potassium. In: Black CA, editor. Methods of Soil Analysis Part 2. Madison, WI, USA: American Society of Agronomy, pp. 1010-1022.
  • Pu ZE, Yu M, He QY, Chen GY, Wang JR, Liu YX, Jiang QT, Li W, Dai SF, Wei YM, Zheng YL (2014). Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integr Agr 13: 2322-2329.
  • Rabbi IY, Hamblin MT, Kumar PL, Gedil MA, Ikpan AS, Jannink JL, Kulakow PA (2014). High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-bysequencing and its implications for breeding. Virus Res 186: 87-96.
  • Ramamurthy RK, Jedlicka J, Graef GL, Waters BM (2014). Identification of new QTLs for seed mineral, cysteine and methionine concentrations in soybean (Glycine max (L.) Merr.). Mol Breed 34: 431-445.
  • Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M et al. (2014). Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9: e101673.
  • Richards LA (1954). Diagnosis and improvement of saline and alkali soils. Washington, DC, USA: USDA, Agriculture Handbook.
  • Rubeena, Ford R, Taylor PWJ (2003). Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor Appl Genet 107: 910-916.
  • Saintenac C, Jiang D, Wang S, Akhunov E (2013). Sequence-based mapping of the polyploid wheat genome. G3 (Bethesda) 3: 1105-1114.
  • Sankaran RP, Huguet T, Grusak MA (2009). Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theor Appl Genet 119: 241-253.
  • Sarker A, Erskine W, Hassan MS, Afzal MA, Murshed ANMM (1999). Registration of “Barimasur-4” lentil. Crop Sci 39: 876.
  • Schlicting E, Blume HP (1966). Bodenkundliches Practikum. Hamburg, Germany: Springer.
  • Sharpe AG, Ramsay L, Sanderson LA, Michael J, Fedoruk MJ, Clarke WE, Li R, Kagale S, Vijayan P, Vandenberg A et al. (2013). Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14: 192.
  • Simic D, Drinic SM, Zdunic Z, Jambrovic A, Ledencan T, Brikic J, Brikic A, Brikic I (2012). Quantitative trait loci for biofortification traits in maize grain. J Hered 103: 47-54.
  • Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau É, Laroche J, Larose S, Jean M et al. (2013). An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8: e54603.
  • Srinivasa J, Arun B, Mishra VK, Singh GP, Velu G, Babu R, Vasistha NK, Joshi AK (2014). Zinc and iron concentration QTL mapped in a Triticum spelta x T. aestivum cross. Theor Appl Genet 127: 1643-1651.
  • Stange M, Utz HF, Schrag TA, Melchinger AE, Würschum T (2013). High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theor Appl Genet 126: 2563-2574.
  • Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD (2007). Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154: 289-294.
  • Tanyolac B, Ozatay Ş, Kahraman A, Muehlbauer F (2010). Linkage mapping of lentil (Lens culinaris L.) genome using recombinant inbred lines revealed by AFLP, ISSR, RAPD and some morphologic markers. J Agric Biotech Sustain Dev 2: 1-6.
  • Thavarajah D, Thavarajah P, Wejesuriya A, Rutzke M, Glahn RP, Combs Jr GF, Vandenberg A (2011). The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3 year study. Euphytica 180: 123-128.
  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009). Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered 100: 771-776.
  • Uitdewilligen JGAML, Wolters AMA, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ (2013). A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS ONE 8: e62355.
  • Van Ooijen JW (2006). JoinMap® 4. Software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands.
  • Van Ooijen JW (2009). MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Netherlands.
  • Vandenberg A, Kiehn FA, Vera C, Gaudiel R, Buchwaldt L, Kirkland KJ, Morrall RAA, Wahab J, Slinkard AE (2001). CDC Milestone lentil. Can J Plant Sci 81: 113-114.
  • Vreugdenhil D, Aarts MGM, Koornneef M, Nelissen H, Ernst WHO (2004). Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ 27: 828-839.
  • Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ (2013). Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14: 2.
  • Waters BM, Grusak MA (2008). Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol 179: 1033-1047.
  • Welch RM (2002). The impact of mineral nutrients in food crops on global human health. Plant Soil 247: 83-90.
  • White PJ, Broadley MR (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182: 49-84.
  • World Health Organization: Health Report. http://www.who.int/ whr/2002/en/whr02_en.pdf (2002). Accessed 15 March 2016.
  • Wu J, Yuan YX, Zhang XW, Zhao J, Song X, Li Y, Li X, Sun R, Koornneef M, Aarts MGM et al. (2008). Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Soil 310: 25-40.
  • Xu YF, An DG, Liu DC, Zhang AM, Xu HX, Li B (2012). Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crop Res 138: 57-62.
  • Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q (2011). Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/ SSR markers. PLoS ONE 6: e17595.
  • Zia-Ul-Haq M, Iqbal S, Ahmad S, Imran M, Niaz A, Bhanger MI (2007). Nutritional and compositional study of desi chickpea (Cicer arientinum L.) cultivars grown in Punjab, Pakistan. Food Chem 105: 1357-1363.
  • Zohary D, Hopf M (2000). Domestication of Plants in the Old World. 3rd edn. New York, NY, USA: Oxford University Press.
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK