Online tomato sorting based on shape, maturity, size, and surface defects using machine vision

Online sorting of tomatoes according to their features is an important postharvest procedure. The purpose of this research was to develop an efficient machine vision-based experimental sorting system for tomatoes. Relevant sorting parameters included shape (oblong and circular), size (small and large), maturity (color), and defects. The variables defining shape, maturity, and size of the tomatoes were eccentricity, average of color components, and 2-D pixel area, respectively. Tomato defects include color disorders, growth cracks, sunscald, and early blight. The sorting system involved the use of a CCD camera, a microcontroller, sensors, and a computer. Images were analyzed with an algorithm that was developed using Visual Basic 2008. In order to evaluate the accuracy of the algorithms and system performance, 210 tomato samples were used. Each detection algorithm was applied to all images. Data about the type of each sample image, including healthy or defective, elongated or rounded, small or large, and color, were extracted. Results show that defect detection, shape and size algorithm, and overall system accuracies were 84.4%, 90.9%, 94.5%, and 90%, respectively. System sorting performance was estimated at 2517 tomatoes h-1 with 1 line.

Online tomato sorting based on shape, maturity, size, and surface defects using machine vision

Online sorting of tomatoes according to their features is an important postharvest procedure. The purpose of this research was to develop an efficient machine vision-based experimental sorting system for tomatoes. Relevant sorting parameters included shape (oblong and circular), size (small and large), maturity (color), and defects. The variables defining shape, maturity, and size of the tomatoes were eccentricity, average of color components, and 2-D pixel area, respectively. Tomato defects include color disorders, growth cracks, sunscald, and early blight. The sorting system involved the use of a CCD camera, a microcontroller, sensors, and a computer. Images were analyzed with an algorithm that was developed using Visual Basic 2008. In order to evaluate the accuracy of the algorithms and system performance, 210 tomato samples were used. Each detection algorithm was applied to all images. Data about the type of each sample image, including healthy or defective, elongated or rounded, small or large, and color, were extracted. Results show that defect detection, shape and size algorithm, and overall system accuracies were 84.4%, 90.9%, 94.5%, and 90%, respectively. System sorting performance was estimated at 2517 tomatoes h-1 with 1 line.

___

  • Blasco J, Aleixos N, Cubero S, Gómez SJ, Moltó E (2009) Automatic sorting of Satsuma (Citrus unshiu) segments using computer vision and morphological features. Comput Electron Agr 66: 1–
  • Gonzalez RC, Woods RE (2002) Digital Image Processing, 2nd ed. Prentice Hall, Inc., New Jersey.
  • Jarimopas B, Jaisin N (2008) An experimental machine vision system for sorting sweet tamarind. J Food Eng 89: 291–297.
  • Lino LAC, Sanches J, Dal FMI (2008) Image processing techniques for lemons and tomatoes classification. Bragantia Campinas 67: 785–789. van Assen HC, Egmont PM, Reiber JC (2002) Accurate object localization in gray level images using the center of gravity measure: accuracy versus precision. IEEE T Image Process 11: 1379–1384.
  • Velioglu SY, Mazza G, Gao L, Omah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agr Food Chem 46: 4113–4117.
  • Weisstein E (2011) Eccentricity. A Wolfram Web Resource. MathWorld, Wolfram Research Inc., available online at http:// mathworld.wolfram.com/Eccentricity.html.
  • Yud RC, Kuanglin C, Moon KS (2002) Machine vision technology for agricultural applications. Comput Electron Agr 28: 173–191.
  • Zhang Y, Yin X, Zou X, Zhao J (2009) On-line sorting maturity of cherry tomato by machine vision. IFIP AICT 295: 2223–2229.
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Online tomato sorting based on shape, maturity, size, and surface defects using machine vision

Omid Omidi ARJENAKI, Parviz Ahmadi MOGHADDAM, Asad Moddares MOTLAGH

Forest management issues of the southern United States and comparisons with Turkey

Pete BETTINGER, Jacek SIRY, Chris CIESZEWSKI, Krista L. MERRY, Hayati ZENGİN, Ahmet YEŞİL

Micropropagation of Vaccinium arctostaphylos L. via lateral-bud culture

Mustafa CÜCE, Ersan BEKTAŞ, Atalay SÖKMEN

Changes in mycorrhizal spore and root colonization of coastal dune vegetation of the Seyhan Delta in the postcultivation phase

Özlem AYTOK, K. Tulühan YILMAZ, İbrahim ORTAŞ, Halil ÇAKAN

The promoted longevity of gerbera cut flowers using geranyl diphosphate and its analog

Zahra Oraghi ARDEBILI, Vahid ABDOSSI, Rosa ZARGARANI, Narges Oraghi Ardebili -

Effects of thinning intensity on the growth of narrow-leaved ash (Fraxinus angustifolia subsp. oxycarpa) plantations

Emrah ÇİÇEK, Faruk YILMAZ, Ali Kemal ÖZBAYRAM, Mehmet EFE, Murat YILMAZ, Ayhan USTA

Multiple shoot regeneration of plumular apices of chickpea

Muhammad AASIM, Sibel DAY, Fereshteh REZAEI, Mortaza HAJYZADEH

Plant microRNAs: new players in functional genomics

Vahap ELDEM, Sezer OKAY, Turgay ÜNVER

Mapping of thermal comfort for outdoor recreation planning using GIS: the case of Isparta Province (Turkey)

Mehmet TOPAY

Extraction of phenolic compounds from melissa using microwave and ultrasound

Alev Emine İNCE, Serpil ŞAHİN, Servet Gülüm ŞÜMNÜ