Molecular characterization of apple (Malus × domestica Borkh.) genotypes originating from three complementary conservation strategies

Molecular characterization of apple (Malus × domestica Borkh.) genotypes originating from three complementary conservation strategies

Apple (Malus × domestica Borkh.) genotypes originating from different plant collections (field collection, in vitro plantcollections undergoing or not undergoing cryopreservation) were screened and characterized by SSR markers. Shoot tips excised fromplants grown in vitro were successfully cryopreserved by encapsulation-dehydration. The highest regrowth frequency (69%, cultivarGoldrush) of cryopreserved apices was achieved after 24 h of osmoprotection in 0.5 M sucrose, 3 h of desiccation, and 24% watercontent of alginate beads. No differences in morphological characteristics including shoot length and number and length of roots wereobserved between controls and plants recovered after cryopreservation. SSR markers were used for calculation of genetic similaritiesbetween plants from the field collection, in vitro-micropropagated plants, or plants regenerated after liquid nitrogen storage. Theset of microsatellite markers showed a low level of polymorphism among the studied genotypes, which could be distinguished by aspecific combination of alleles generated by CH03g07, CH05c02, CH05d11, and CH05e03 primers. The CH03g07, CH05c02, CH05d11,CH05e03, GD96, GD147, and GD162 SSR markers exhibited low levels of polymorphism, while CH04AE07, CH04g10, GD100, andGD142 were nonpolymorphic. The Dice coef­ficient confirmed the effectiveness of SSRs for distinguishing between plants from exsitu collections and preserved plants. No major differences between ex situ plants, micropropagated plants, and plants recovered aftercryopreservation were observed.

___

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993). Optimizing parental selection for genetic linkage maps. Genome 36: 181-186.
  • Barraco G, Sylvestre I, Engelmann F (2011). Comparing encapsulation-dehydration and droplet-vitrification for cryopreservation of sugarcane (Saccharum spp.) shoot tips. Sci Hortic 130: 320-324.
  • Benelli C, de Carlo A, Engelmann F (2013). Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotech Adv 31: 175-185.
  • Block W (2003). Water status and thermal analysis of alginate beads used in cryopreservation of plant germplasm. Cryobiology 47: 59-72.
  • Bouhadida M, Moreno MA, Gonzalo MJ, Alonso JM, Gogorcena Y (2011). Genetic variability of introduced and local Spanish peach cultivars determined by SSR markers. Tree Genet Genom 7: 257-270.
  • Butiuc-Keul A, Halmagyi A, Isac V, Crăciunaş C, Carpa R (2010). Apple shoot multiplication and plantlets reaction to in vitro culture. Analele Universităţii din Oradea - Fascicula Biologie 27: 70-75.
  • Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R (2008). A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8: 127.
  • Clark MF, Adams AN (1977). Characteristics of microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. J Gen Vir 34: 475-483.
  • Condello E, Palombi MA, Tonelli MG, Damiano C, Caboni E (2009). Genetic stability of wild pear (Pyrus pyraster, Burgsd) after cryopreservation by encapsulation-dehydration. Agric Food Sci 18: 136-143.
  • Cruz-Cruz CA, González-Arnao MT, Engelmann F (2013). Biotechnology and conservation of plant biodiversity. Resources 2: 73-95.
  • Desvignes JC, Grasseau N, Boyé R, Cornaggia D, Aparicio F, Di Serio F, Flores R (1999). Biological properties of apple scar skin viroid: isolates, host range, different sensitivity of apple cultivars, elimination, and natural transmission. Plant Dis 83: 768-772.
  • Dice LR (1945). Measures of the amount of ecologic association between species. Ecology 26: 297-302.
  • Dobránszki J, Teixeira da Silva JA (2010). Micropropagation of apple - A review. Biotech Adv 28: 462-488.
  • Doyle J, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15.
  • Druart P (2003). Micropropagation of apples (Malus sp.). In: Mohan JS, Ishii K, editors. Micropropagation of Woody Trees and Fruits. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 433-465.
  • Engelmann F, Gonzalez-Arnao MT, Wu Y, Escobar R (2008). Development of encapsulation dehydration. In: Reed BM, editor. Plant Cryopreservation: A Practical Guide. New York, NY, USA: Springer, pp. 59-75.
  • EPPO (2007). EPPO Plant Quarantine Data Retrieval System, Version 4.6. Paris, France: European and Mediterranean Plant Protection Organization.
  • EPPO (2015). PQR-EPPO Database on Quarantine Pests. Paris, France: European and Mediterranean Plant Protection Organization. Farrokhi J, Darvishzadeh R, Naseri L, Mohseni AM, Hatami MH (2011). Evaluation of genetic diversity among Iranian apple (Malus × domestica Borkh.) cultivars and landraces using simple sequence repeat markers. Austr J Crop Sci 5: 815-821.
  • Feng CH, Cui ZH, Li BQ, Ma YL, Zhao YH, Wang QC (2013). Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell Tissue Org Cult 112: 369-378.
  • Galli Z, Halász G, Kiss E, Dobránszki J, Heszky L (2006). Using SSR markers to distinguish apple cultivars. Acta Hort 725: 673-678.
  • Galli Z, Halász G, Kiss E, Heszky L, Dobránszki J (2005). Molecular identification of commercial apple cultivars with microsatellite markers. Hortsci 40: 1974-1977.
  • Ganopoulos I, Tourvas N, Xanthopoulou A, Aravanopoulos FA, Avramidou E, Zambounis A, Tsaftaris A, Madesis P, Sotiropoulos T, Koutinas N (2017). Phenotypic and molecular characterization of apple (Malus × domestica Borkh) genetic resources in Greece. Sci Agric 75: 509-518.
  • Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009). Genetic identity and relationships of Iranian apples (Malus × domestica Borkh) cultivars and landraces, wild apple species and representative old apple cultivars based on SSR markers. Genet Resour Crop Evol 56: 829-842.
  • Goulão L, Oliveira CM (2001). Molecular characterisation of cultivars of apple (Malus × domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122: 81-89.
  • Guarino C, Santoro S, De Simone L, Lain O, Cipriani G, Testolin R (2006). Genetic diversity in a collection of ancient cultivars of apple (Malus × domestica Borkh.) as revealed by SSR-based fingerprinting. J Hortic Sci Biotechnol 81: 39-44.
  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997). Microsatellites in Malus × domestica (apple): Abundance, polymorphism and cultivar identification. Theor Appl Genet 94: 249-254.
  • Halmagyi A, Deliu C (2006). Cryopreservation of strawberry shoot tips by encapsulation-dehydration. Not Bot Horti Agrobot 34: 28-33.
  • Halmagyi A, Deliu C, Isac V (2010). Cryopreservation of Malus cultivars: comparison of two droplet protocols. Sci Hort 124: 387-392.
  • Hammer Ø, Harper DAT, Ryan PD (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-9.
  • Hao YJ, Liu QL, Deng XX (2001). Effect of cryopreservation on apple genetic resources at morphological, chromosomal, and molecular levels. Cryobiology 43: 46-53.
  • Harding K (2004). Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25: 3-22.
  • Höfer M (2015). Cryopreservation of winter-dormant apple buds: establishment of a duplicate collection of Malus germplasm. Plant Cell Tissue Organ Cult 121: 647-656.
  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998). Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97: 671-683.
  • Jaccard P (1908). Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44: 223-270 (in French). Kami D, Shi L, Sato T, Suzuki T, Oosawa K (2009). Cryopreservation of shoot apices of hawthorn in vitro cultures originating from East Asia. Sci Hortic 120: 84-88.
  • Király I (2013). Characterisation of apple cultivars from the Carpathian Basin by means of pomologıcal analysis and molecular marker analysis based on microsatellites. PhD, Corvinus University of Budapest, Budapest, Hungary. Kitahara K, Matsumoto S, Yamamoto T, Soejima J, Kimura T, Komatsu H, Abe K (2005). Parent identification of eight apple cultivars by S-RNase analysis and simple sequence repeat markers. HortScience 40: 314-317.
  • Kuo CC, Lineberger RD (1985). Survival of in vitro cultures tissue of ‘Jonathan’ apples exposed to –196 °C. HortScience 20: 764-767.
  • Kushnarenko SV, Romadanove NV, Reed BM (2009). Cold acclimation improves regrowth of cryopreserved apple shoot tips. CryoLetters 30: 47-54.
  • Lambardi M, Benelli C, De Carlo A, Ozudogru EA, Previati A, Ellis D (2011). Cryopreservation of ancient apple cultivars of Veneto: a comparison between PVS2-vitrification and dormant-bud techniques. Acta Hortic 908: 191-198.
  • Lambardi M, Halmagyi A, Benelli C, de Carlo A, Vettori C (2007). Seed cryopreservation for conservation of ancient Citrus germplasm. Adv Hortic Sci 21: 198-202.
  • Le Bras C, Le Besnerais PH, Hamama L, Grapin A (2014). Cryopreservation of ex-vitro-grown Rosa chinensis ‘Old Blush’ buds using droplet-vitrification and encapsulationdehydration. Plant Cell Tiss Org Cult 116: 235-242.
  • Lee ECM, De Fossard RA (1977). Some factors affecting multiple bud formation of strawberry (Fragaria × ananassa Duch.) in vitro. Acta Hort 78: 187-196.
  • Li BQ, Feng CH, Hu LY, Wang MR, Chen L, Wang QC (2014). Shoot regeneration and cryopreservation of shoot tips of apple (Malus) by encapsulation-dehydration. In Vitro Cell Dev BiolPlant 50: 357-368.
  • Li BQ, Feng CH, Wang MR, Hu LY, Volk G Wang QC (2015). Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using dropletvitrification and encapsulation-dehydration procedures. J Biotechnol 214: 182-191.
  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler G (2002). Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10: 217-241.
  • Liu YG, Liu LX, Wang L, Gao AY (2008). Determination of genetic stability in surviving apple shoots following cryopreservation by vitrification. CryoLetters 29: 7-14.
  • Martín C, Senula A, González I, Acosta A, Keller ER, GonzálezBenito E (2013). Genetic identity of three mint accessions stored by different conservation procedures: field collection, in vitro and cryopreservation. Genet Resour Crop Evol 60: 242- 249.
  • Muntean CM, Leopold N, Halmagyi A, Valimareanu S (2011a). Surface-enhanced Raman spectroscopy of DNA from leaves of in vitro-grown apple plants. J Raman Spectrosc 42: 844-850.
  • Muntean CM, Leopold N, Halmagyi A, Valimareanu S (2011b). Ultrasensitive detection of genomic DNA from apple leaf tissues, using surface-enhanced Raman scattering. Spectroscopy 25: 33-43.
  • Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.
  • Nemeth M (1986). Virus, Mycoplasma and Rickettsia Diseases of Fruit Trees. Dordrecht, the Netherlands: Martinus Nijhoff Publishers.
  • Niino T, Sakai A (1992). Cryopreservation of alginate-coated in-vitro grown shoot tips of apple, pear and mulberry. Plant Sci 87: 199- 206.
  • Padrò MDA, Frattarelli A, Sgueglia A, Condello E, Damiano C, Caboni E (2012). Cryopreservation of white mulberry (Morus alba L.) by encapsulation-dehydration and vitrification. Plant Cell Tissue Org Cult 108: 167-172.
  • Panis B, Lambardi M (2005). Status of cryopreservation technologies in plants (crops and forest trees). In: The Role of Biotechnology for the Characterization and Conservation of Crop, Forest, Animal and Fishery Genetic Resources in Developing Countries. Turin, Italy: FAO, pp. 43-54.
  • Patocchi A, Fernandez-Fernandez F, Evans K, Silfverberg-Dilworth E, Matasci C, Gobbin D, Rezzonico F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M et al. (2009). Development of a set of apple SSRs markers spanning the apple genome, genotyping of HiDRAS plant material and validation of genotyping data. Acta Hort 814: 603-608.
  • Paul H, Daigny G, Sangwan-Norreel BS (2000). Cryopreservation of apple (Malus domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19: 768-774.
  • Pereira-Lorenzo S, Ramos-Cabrer AM, Diáz-Hernández MB (2007). Evaluation of genetic identity and variation of local apple cultivars (Malus × domestica Borkh.) from Spain using microsatellite markers. Genetic Res Crop Evol 54: 405-420.
  • Pérez-Romero LF, Suárez MP, Dapena E, Rallo P (2015). Molecular and morphological characterization of local apple cultivars in Southern Spain. Genet Mol Res 14: 1487-1501.
  • Pradhan S, Regmi T, Ranjit M, Pant B (2016). Production of virusfree orchid Cymbidium aloifolium (L.) Sw. by various tissue culture techniques. Heliyon 2: e00176.
  • Reed BM (2008). Cryopreservation – practical considerations. In: Reed BM, editor. Plant Cryopreservation: A Practical Guide. New York, NY, USA: Springer, pp. 3-11.
  • Rojas G, Méndez MA, Muñoz C, Lemus G, Hinrichsen P (2008). Identification of a minimal microsatellite marker panel for the fingerprinting of peach and nectarine cultivars. Electronic J Biotechnol 11: 5.
  • Sansavini S, Donati F, Costa F, Tartarini S (2004). Advances in apple breeding for enhanced fruit quality and resistance to biotic stresses: new varieties for the European market. J Fruit Orn Plant Res 12: 13-51.
  • Schlötterer C (2004). The evolution of molecular markers – just a matter of fashion? Nat Rev Genet 5: 63-69.
  • Shatnawi MA, Shibli R, Qrunfleh I, Bataeineh K, Obeidat M (2007). In vitro propagation and cryopreservation of Prunus avium using vitrification and encapsulation-dehydration. J Food Agric Environ 5: 204-208.
  • Sikorskaite S, Gelvonauskiene D, Stanys V, Baniulis D (2012). Characterization of microsatellite loci in apple (Malus × domestica Borkh.) cultivars. Žemdirbystė 99: 131-138.
  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F et al. (2006). Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomics 2: 202-224.
  • Singh RB (2000). Biotechnology, biodiversity and sustainable agriculture – A contradiction? In: Mendoza EMT, editor. Regional Conference in Agricultural Biotechnology Proceedings: Biotechnology Research and Policy – Needs and Priorities in the Context of Southeast Asia’s Agricultural Activities. Bangkok, Thailand: SEARCA (SEAMEO)/FAO/ APSA, pp. 1-18.
  • Vălimăreanu S, Halmagyi A, Isac V (2010). Genetic fidelity evaluation of micropropagated Malus cultivars and rootstocks. Adv Hort Sci 24: 219-223.
  • Wang B, Li JW, Zhang ZB, Wang RR, Ma YL, Blystad DR, Keller ERJ, Wang QC (2014). Three vitrification-based cryopreservation procedures cause different cryo-injury to potato shoot tips while all maintain genetic integrity in regenerants. J Biotechnol 84: 47-55.
  • Wang Q, Laamanen J, Uosukainen M, Valkonen JPT (2005). Cryopreservation of in vitro-grown shoot tips of raspberry (Rubus idaeus L.) by encapsulation-vitrification and encapsulation-dehydration. Plant Cell Rep 24: 280-288.
  • Wu YJ, Engelmann F, Zhao YH, Zhou MD, Chen SY (1999). Cryopreservation of apple shoot tips: importance of cryopreservation technique and of conditioning donor plants. CryoLetters 20: 121-130.
  • Yi JY, Lee GA, Chung JW, Lee YY, Kwak JG, Lee SY (2015). Morphological and genetic stability of dormant apple winter buds after cryopreservation. Korean J Plant Res 28: 697-703.
  • Zhang C, Chen X, He T, Liu X, Feng T, Yuan Z (2007). Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. J Genet Genomics 34: 947-955.