Insect-resistant transgenic crops: retrospect and challenges

The advent of genetic engineering has revolutionized agriculture remarkably with the development of superior insect-resistantcrop varieties harboring resistance against insect pests.Bacillus thuringiensis (Bt) has been used as a main source for insect-resistantgenes. In addition to Bt endotoxins, various plant lectins and other non-Bt genes from different sources have also been introduced incrop plants of economic importance. The insect-resistant crops have made a huge economic impact worldwide since their commercialrelease. The cultivation of insect-resistant cultivars has resulted both in increased crop productivity and in decreased environmentalpollution. Although insect-resistant crops have been allowed to be commercialized following proper biosafety guidelines and procedures,still these crops face many challenges in order to be fully adopted and accepted. The degradation kinetics of Bt proteins, horizontal andvertical gene flow, effects on nontarget insects or organisms, antibiotic resistance, and some other unintended effects have been notedand discussed. Although no concrete evidence regarding any significant hazard of genetically engineered crops has been presented sofar, the debate still remains intense. Impartial and professionally competent regulatory mechanisms for the evaluation of insect-resistantand other transgenic crops must be fully functionalized. The first part of this review focuses the development of different insect-resistantcrops and various strategies adapted to delay resistance development in insect pests, while the second part addresses the challenges andfuture prospects of insect-resistant crops.

Insect-resistant transgenic crops: retrospect and challenges

The advent of genetic engineering has revolutionized agriculture remarkably with the development of superior insect-resistantcrop varieties harboring resistance against insect pests.Bacillus thuringiensis (Bt) has been used as a main source for insect-resistantgenes. In addition to Bt endotoxins, various plant lectins and other non-Bt genes from different sources have also been introduced incrop plants of economic importance. The insect-resistant crops have made a huge economic impact worldwide since their commercialrelease. The cultivation of insect-resistant cultivars has resulted both in increased crop productivity and in decreased environmentalpollution. Although insect-resistant crops have been allowed to be commercialized following proper biosafety guidelines and procedures,still these crops face many challenges in order to be fully adopted and accepted. The degradation kinetics of Bt proteins, horizontal andvertical gene flow, effects on nontarget insects or organisms, antibiotic resistance, and some other unintended effects have been notedand discussed. Although no concrete evidence regarding any significant hazard of genetically engineered crops has been presented sofar, the debate still remains intense. Impartial and professionally competent regulatory mechanisms for the evaluation of insect-resistantand other transgenic crops must be fully functionalized. The first part of this review focuses the development of different insect-resistantcrops and various strategies adapted to delay resistance development in insect pests, while the second part addresses the challenges andfuture prospects of insect-resistant crops.

___

  • Yonemochi et al., 2002
  • Bt endotoxin (Bt-176) Mouse
  • Brake et al., 2004 cry3Bb1 Rat
  • Hammond et al., 2006 cry1Ab Salmon
  • Sagstad et al., 2007 cry3Bb1 Rat
  • Séralini et al., 2007
  • cry1Ab (MON810) Salmon
  • Bakke-McKellep et al., 2008 Potato Mouse
  • Fares and El-Sayed, 1998 GNA Rat
  • Ewen and Pusztai, 1999 Rice
  • Zhuo et al., 2004 cry1Ab (KMDI) Rat
  • Schrİder et al., 2007 GNA Rat
  • Poulsen et al., 2007a PHA-E lectin Rat
  • Poulsen et al., 2007b cry1Ac and sck Rat
  • Zhang et al., 2013 Tomato cry1Ab Rat
  • The increasing world population, to reach 9.7 billion
  • in 2050, is a true challenge for the scientific community.
  • We cannot feed tomorrow’s population with yesterday’s
  • technology. Therefore, we cannot ignore the huge
  • potential of transgenic technology to enhance the food
  • supply for an increasing population. Following proper
  • biosafety guidelines, integration of modern technologies
  • to develop insect-resistant crops in conventional breeding
  • methods and their economic benefits downstream are
  • quite promising for the future of agriculture.
  • Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mahon R, Moar WJ,
  • Moore A, Higgins TJV (2010). Expression of a sequence
  • modified cry2Aa gene for resistance to Helicoverpa armigera in
  • chickpea (Cicer arietinum L.). Plant Sci 178: 333–339. Adang MJ, Brody MS, Cardineau G, Eagan N, Roush RT, Shewmaker
  • CK, Jones A, Oakes JE, McBride KE (1993). The reconstruction
  • and expression of a Bacillus thuringiensis cryIIIA gene in
  • protoplasts and potato plants. Plant Mol Biol 21: 1131–1145. Andrews RW, Fausr R, Wabiko MH, Roymond KC, Bulla LA (1987).
  • Biotechnology of Bt: a critical review. Bio/Technology 6: 163– 232. Arjó G, Portero M, Piñol C, Viñas J, Matias-Guiu X, Capell T,
  • Bartholomaeus A, Parrott W, Christou P (2013). Plurality of
  • opinion, scientiŞc discourse and pseudoscience: an in depth
  • analysis of the Séralini et al. study claiming that Roundup™
  • Ready corn or the herbicide Roundup™ cause cancer in rats.
  • Transgenic Res 22: 255–267. Azadi H, Ho P (2010). Genetically modified and organic crops in
  • developing countries: a review of options for food security.
  • Biotechnol Adv 28: 160–168. Badosa E, Moreno C, Montesinos E (2004). Lack of detection of
  • ampicillin resistance gene transfer from Bt176 transgenic corn
  • to culturable bacteria under field conditions. FEMS Microbiol
  • Ecol 48: 169–178. Bakhsh A, Rao AQ, Shahid AA, Husnain T, Riazuddin S (2009).
  • Insect resistance and risk assessment studies in advance lines of
  • Bt cotton harboring Cry1Ac and Cry2A genes. Am Eur J Agric
  • Environ Sci 6: 1–11. Bakhsh A, Rao AQ, Shamim Z, Husnain T (2011a). A minireview:
  • RuBisCo small subunit as strong green tissue specific promoter.
  • Arch Biol Sci 63: 299–307. Bakhsh A, Shahzad K, Husnain T (2011b). The variation in spatio
  • temporal expression of insecticidal genes in transgenic cotton.
  • Czech J Genet Plant Breed 47: 1–9. Bakhsh A, Siddiq S, Husnain T (2012). A molecular approach
  • to combat spatio-temporal variation in insecticidal gene
  • (Cry1Ac) expression in cotton. Euphytica 183: 65–74. Bakke-McKellep AM, Sanden M, Danieli A, Acierno R,  Hemre
  • GI,  Maffia M,  Krogdahl A (2008). Atlantic salmon (Salmo
  • salar L.) Parr fed genetically modified soybeans and maize:
  • histological, digestive, metabolic, and immunological
  • investigations. Res Vet Sci 84: 395–408. Bakshi A (2003). Potential adverse health effects of genetically
  • modified crops. J Toxicol Env Heal B 6: 211–225. Bala A, Roy A, Das A, Chakraborti D, Das S (2013). Development
  • of selectable marker free, insect resistant, transgenic mustard
  • (Brassica juncea) plants using Cre/lox mediated recombination.
  • BMC Biotechnol 13: 88. Bashir K, Husnain T, Fatima T, Latif Z, Mehdi SA, Riazuddin S
  • (2004). Field evaluation and risk assessment of transgenic
  • indica basmati rice. Mol Breed 13: 301–312. Bashir K, Husnain T, Fatima T, Riaz N, Riazzudin S (2005). Novel
  • indica basmati line (B-370) expressing two unrelated Bacillus
  • thuringiensis genes is highly resistant to two lepidopterans in
  • the field. Crop Prot 24: 870–879.  Brake DG, Thaler R, Evenson DP (2004). Evaluation of Bt (Bacillus
  • thuringiensis) corn on mouse testicular development by dual
  • parameter flow cytometry. J Agric Food Chem 52: 2097–2102. Brookes G, Barfoot P (2010). GM Crops: Global Socio-Economic
  • and Environmental Impacts 1996-2008. Dorchester, UK: P.G.
  • Economics Ltd. Chakraborti D, Sarkar A, Mondal HA, Das S (2009). Tissue specific
  • expression of potent insecticidal, Allium sativum leaf agglutinin
  • (ASAL) in important pulse crop, chickpea (Cicer arietinum L.)
  • to resist the phloem feeding Aphis craccivora. Transgenic Res 18: 529–544. Chandrasekhar K, Vijayalakshmi M, Vani K, Kaul T, Reddy MK
  • (2014). Phloem-specific expression of the lectin gene from
  • Allium sativum confers resistance to the sap-sucker Nilaparvata
  • lugens. Biotechnol Lett 36: 1059–1067. Cheng J, Bolyard MG, Saxena RC, Sticklen MB (1992). Production of
  • insect resistant potato by genetic transformation with a delta
  • endotoxin gene from Bacillus thuringiensis var. kurstaki. Plant Sci 81: 83–91. Cheng XY, Sardana R, Kaplan H, Altosaar I (1998). Agrobacterium
  • transformed rice expressing synthetic cry1Ab and cry1Ac
  • genes are highly toxic to striped stem borer and yellow stem
  • borer. P Natl Acad Sci USA 95: 2767–2772. Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006).
  • Recent developments and future prospects in insect pest
  • control in transgenic crops. Trends Plant Sci 11: 302–308. Cohen BM, Gould F, Bentur JC (2000). Bt rice: practical steps to
  • sustainable use. IRRN 2: 4–10. Curry D (2002). Farming and Food: A Sustainable Future. Report of
  • the Policy Commission on the Future of Farming and Food.
  • London, UK: Her Majesty’s Stationery Office. Czapla TH, Lang BA (1990). Effect of plant lectins on the larval
  • development of European corn borer (Lepidoptera: Pyralidae)
  • and Southern corn rootworm (Coleoptera: Chrysomelidae). J
  • Econ Entomol 83: 2480–2485. D’Agnolo G (2005). GMO: Human health risk assessment. Vet Res Comm 29: 7–11. Dang W, Wei ZM (2007). Efficient agrobacterium-mediated
  • transformation of soybean. J Mole Cell Biol 3: 85–96. Davison J (1999). Genetic exchange between bacteria in the
  • environment. Plasmid 42: 73–91. de Vendômois JS, Roullier F, Cellier D, Séralini G (2009). A
  • comparison of the effects of three GM corn varieties on
  • mammalian health. Int J Biol Sci 5: 706–726. de Vries J, Heine M, Harms K, Wackernagel W (2003). Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl Environ
  • Microbiol 69: 4455–4462. Dhaliwal HS, Kawai M, Uchimiya H (1998). Genetic engineering for
  • abiotic stress tolerance in plants. Plant Biotechnol 15: 1–10. Domingo JL, Bordonaba JG (2011). A literature review on the safety
  • assessment of genetically modified plants. Environ Int 37: 734–742. Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller
  • DL, Bucao LQ, Seidler RJ (1995). Changes in levels, species,
  • and DNA fingerprints of soil microorganisms associated
  • with cotton expressing the Bacillus thuringiensis var kurstaki
  • endotoxin. Appl Soil Ecol 2: 111–124. Doull J, Gaylor D, Greim HA, Lovell DP, Lynch B, Munro IC (2007).
  • Report of an expert panel on the reanalysis by Séralini and
  • others (2007) of a 90-day study conducted by Monsanto in
  • support of the safety of a genetically modiŞed corn variety
  • (MON 863). Food Chem Toxicol 45: 2073–2085. Droge M, Puhler A, Selbitschka W (1998). Horizontal gene transfer
  • as a biosafety issue: a natural phenomenon of public concern. J
  • Biotechnol 64: 75–90. Duan X, Li X, Xue Q, Abo-El-Saad M, Xu D, Wu R (1996). Transgenic
  • rice plants harbouring an introduced potato proteinase
  • inhibitor II gene are insect resistant. Nat Biotechnol 14: 494– 498. Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Jansens
  • S, Pelissier B, Peltier G, Dubald M (2005). Generation
  • and analysis of soybean plastid transformants
  • expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol
  • Biol 58: 659–668. Dutta I, Majumder P, Saha P, Ray K, Das S (2005). Constitutive and
  • phloem specific expression of Allium sativum leaf agglutinin
  • (ASAL) to engineer aphid (Lipaphis erysimi) resistance in
  • transgenic Indian mustard (Brassica juncea). Plant Sci 169: 996–1007. Dzitoyeva S, Dimitrijevic N, Manev H (2001). Intra-abdominal
  • injection of double-stranded RNA into anesthetized adult
  • Drosophila triggers RNA interference in the central nervous
  • system. Mol Psychiatry 6: 665–670. Eisemann CH, Donaldson RA, Pearson RD, Cadagon LC, Vuocolo
  • T, Tellam RL (1994). Larvicidal activity of lectins on Lucilia
  • cuprina: mechanism of action. Entomol Exp Appl 72: 1–11. EJF (2007). The Deadly Chemicals in Cotton. London, UK:
  • Environmental Justice Foundation in Collaboration with
  • Pesticide Action Network UK. Ewen SW, Pusztai A (1999). Effect of diets containing genetically
  • modified potatoes expressing Galanthus nivalis lectin on rat
  • small intestine. Lancet 354: 1353–1354. Fares NH, El-Sayed AK (1998). Fine structural changes in the ileum
  • of mice fed on delta-endotoxin-treated potatoes and transgenic
  • (1998). Potent and specific genetic interference by double
  • stranded RNA in Caenorhabditis elegans. Nature 391: 806–811. Fitt GP, Mares CL, Llewellyn DJ (1994). Field evaluation and
  • potential ecological impact of transgenic cotton (Gossypium
  • hirsutum) in Australia. Biocontrol Sci Technol 4: 535–548. Foissac X, Loc NT, Christou P, Gatehouse AMR, Gatehouse JA
  • (2000). Resistance to green leafhopper (Nephotettix virescens)
  • and brown planthopper (Nilaparvata lugens) in transgenic
  • rice expressing snowdrop lectin (Galanthus nivalis agglutinin;
  • GNA). J Insect Physiol 46: 573–583. Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K
  • (1993). Insect resistant rice generated by introduction of a
  • modified  δ-endotoxin gene of Bacillus thuringiensis. Bio/
  • Technology 11: 1151–1155. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YC, Kochian LV,
  • Wu RJ (2002). Trehalose accumulation in rice plants confers
  • high tolerance levels to different abiotic stresses. P Natl Acad
  • Sci USA 99: 15898–15903. Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW
  • (2011). Field-evolved resistance to Bt maize by western corn
  • rootworm. PLoS One 6: e22629. Gatehouse AMR, Davison GM, Stewart JN, Gatehouse LN,
  • Kumar A, Geoghegan IE, Birch ANE, Gatehouse JA (1999).
  • Concanavalin A inhibits development of tomato moth
  • (Lacanobia oleracea) and peach-potato aphid (Myzus persicae)
  • when expressed in transgenic potato plants. Mole Breed 5: 153–165. Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011). Insect
  • resistant biotech crops and their impacts on beneficial
  • arthropods. Philos T Roy Soc B 366: 1438–1452. Gatehouse AMR, Hilder VA, Boulter D (1992). Potential of plant
  • derived genes in the genetic manipulation of the crops for
  • insect resistance, In: Gatehouse AMR, Hilder VA, Boulter
  • D, editors. Plant Genetic Manipulation for Crop Protection.
  • Wallingford, UK: CAB International, pp. 155–181. Gatehouse JA (2002). Plant resistance towards insect herbivores: a
  • dynamic interaction. New Phytol 156: 145–169. Gay P (2001). The biosafety of antibiotic resistance markers
  • in plant transformation and the dissemination of genes
  • through horizontal gene flow. In: Custers R, editor. Safety of
  • Genetically Engineered Crops. Zwijnaarde, Belgium: Flanders
  • Interuniversity Institute for Biotechnology, pp. 135–159. Godfrey J (2000). Do genetically modified foods affect human
  • health? Lancet 355: 414. Goldstein IJ, Hayes CE (1978). The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem 35: 127– 340. Halfhill MD, Richards HA, Mabon SA, Stewart CN Jr (2001).
  • Expression of GFP and Bt transgenes in  Brassica napus  and
  • hybridization and introgression with Brassica rapa. Theor Appl
  • Genet 103: 362–368. Hammond B, Lemen J, Dudek R Ward D, Jiang C, Nemeth M, Burns
  • J (2006). Results of a 90-day safety assurance study with rats fed
  • grain from corn rootworm-protected corn. Food Chem Toxicol 44: 147–160. Hannon GJ (2002). RNA interference. Nature 418: 244–251. Herman RA, Scherer PN, Wolt JD (2002). Rapid degradation of a
  • binary, PS149B1, δ-endotoxin of Bacillus thuringiensis in soil,
  • and a novel mathematical model for fitting curve-linear decay.
  • Environ Entomol 31: 208–214. Hernández M, Pla M, Esteve T, Prat S, Puigdomènech P, Ferrando
  • A (2003). A specific real-time quantitative PCR detection
  • system for event MON810 in maize YieldGard ® based on the
  • 3-transgene integration. Transgenic Res 12: 179–189. Herrnstadt G, Soares RW, Edward L, Edwards D (1986). A new
  • strain of Bacillus thuringiensis with activity against coleopteran
  • insects. Bio/Technology 4: 305–308. Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D
  • (1987). A novel mechanism of insect resistance engineered into
  • tobacco. Nature 330: 160–163. Hoekenga OA (2008). Using metabolomics to estimate unintended
  • effects in transgenic crop plants: problems, promises, and
  • opportunities. J Biomol Tech 19: 159–166. Hollingworth RM, Bjeldanes LF, Bolger M, Kimber I, Meade BJ, Taylor
  • SL, Wallace KB; Society of Toxicology ad hoc Working Group
  • (2003). The safety of genetically modiŞed foods produced
  • through biotechnology. Toxicol Sci 71: 2–8. Hossain MA, Maiti MK, Basu A, Sen S, Ghosh AK, Sen SK (2006).
  • Transgenic expression of onion leaf lectin gene in Indian
  • mustard offers protection against aphid colonization. Crop Sci 46: 2022–2032. Huang FN, Buschman LL, Higgins RA, Li H (2002). Survival of Kansas
  • Dipel-resistant European corn borer Lepidoptera: Crambidae)
  • on Bt and non-Bt corn hybrids. J Econ Entomol 95: 614–621. Hussain SS (2002). Genetic transformation of cotton with Galanthus
  • Nivalis Agglutinin (GNA) gene. PhD, University of the Punjab,
  • Lahore, Pakistan. Indurker S, Misra HS, Eapen S (2007). Genetic transformation of
  • chickpea (Cicer arietinum L.) with insecticidal crystal protein
  • gene using particle gun bombardment. Plant Cell Rep 26: 755– 763. James C (2013). Global Status of Commercialized Biotech/GM Crops.
  • ISAAA Brief No. 46. Ithaca, NY, USA: ISAAA. Jia SR (2002). Studies on gene flow in China – a review. In: 7th
  • International Symposium on the Biosafety of Genetically
  • Modified Organisms, Beijing, China. Beijing, China: Peking
  • University Press, pp. 110–116. Kanrar S, Venkateswari J, Kirti PB, Chopra VL (2002). Transgenic
  • Indian mustard (Brassica juncea) with resistance to the mustard
  • aphid (Lipaphis erysimi Kalt.). Plant Cell Rep 20: 976–981. Kereša S, Grdiša M, Barić M, Barčić J, Marchetti S (2008). Transgenic
  • plants expressing insect resistance genes. Sjemenarstvo 25: 139–153. Khan GA, Bakhsh A, Ghazanffar M, Riazuddin S, Husnain T (2013).
  • Development of transgenic cotton pure lines harboring a
  • pesticidal gene (cry1Ab). Emir J Food Agric 25: 434–442. Khan GA, Bakhsh A, Riazuddin S, Husnain T (2011). Introduction
  • of  cry1Ab  gene into cotton (Gossypium hirsutum) enhances
  • resistance against lepidopteran pest (Helicoverpa armigera).
  • Span J Agr Res 9: 296–300. Klausner A (1984). Microbial insect control: using bugs to kill bugs.
  • Nat Biotechnol 2: 408–419. Koul B, Srivastava S, Sanya I, Tripathi B, Sharma V, Amla DV
  • (2014). Transgenic tomato line expressing modified Bacillus
  • thuringiensis cry1Ab gene showing complete resistance to two
  • lepidopteran pests. Springer Plus 3: 84. Kouser S, Qaim M (2012). Valuing financial, health and environmental
  • benefits of Bt cotton in Pakistan. In: International Association
  • of Agricultural Economists Triennial Conference, Foz do
  • Iguaçu, Brazil. Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw C,
  • Crossland L, Dawson J, Desai N, Hill M, Kadwell S et al. (1993).
  • Field performance of elite transgenic maize plants expressing
  • an insecticidal protein derived from Bacillus thuringiensis. Bio/
  • Technology 11: 194–200. Krattiger AF (1997). Insect Resistance in Crops: A Case Study of
  • Bacillus thuringiensis (Bt) and Its Transfer to Developing
  • Countries. ISAAA Briefs No. 2. Ithaca, NY, USA: ISAAA. Kumar H, Kumar V (2004). Tomato expressing Cry1A(b) insecticidal
  • protein from Bacillus thuringiensis protected against tomato
  • fruit borer, Helicoverpa armigera (Hübner) (Lepidoptera:
  • Noctuidae) damage in the laboratory, greenhouse and field.
  • Crop Prot 23: 135–139. Kwit C, Moon HS, Warwick SI, Stewart CN Jr (2011). Transgene
  • introgression in crop relatives: molecular evidence and
  • mitigation strategies. Trends Biotechnol 29: 284–293. Lee D, Natesan E (2006). Evaluating genetic containment strategies
  • for transgenic plants. Trends Biotechnol 24: 109–114. Li Y, Wu K, Zhang Y, Yuan G (2007). Degradation of Cry1Ac protein
  • within transgenic Bacillus thuringiensis rice tissues under field
  • and laboratory conditions. Environ Entomol 36: 1275–1282. Li YH, Romeis J, Wang P, Peng YF, Shelton AM (2011). A
  • comprehensive assessment of the effects of Bt cotton
  • on Coleomegilla maculate demonstrates no detrimental effects
  • by Cry1Ac and Cry2A. PLoS One 6: e22185. Londo JP, Bautista NS, Sagers CL, Lee HE, Watrud LS (2010).
  • Glyphosate drift promotes changes in fitness and transgene
  • gene flow in canola (Brassica napus) and hybrids. Ann Bot 106: 957–965. Losey JE, Rayor LS, Carter ME (1999). Transgenic pollen harms monarch larvae. Nature 399: 214. Lovei, GL, Andow DA, Arpaia S (2009). Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies.
  • Environ Entomol 38: 293–306. Lu BR, Snow AA (2005). Gene flow from genetically modified rice
  • and its environmental consequences. Bioscience 55: 669–678. Lynch JA, Desplan C (2006). A method for parental RNA interference
  • in the wasp Nasonia vitripennis. Nat Protoc 1: 486–494. Ma BL, Blackshaw RE, Roy J, He T (2011). Investigation on gene
  • transfer from genetically modified corn (Zea mays L.) plants to
  • soil bacteria. J Environ Sci Health, Part B 46: 590–599. Majeed A (2005). Expression of proteinase inhibitor gene in cotton.
  • PhD, University of the Punjab, Lahore, Pakistan. Mandaokar AD, Goyal RK, Shukla A, Bisaria S, Bhalla R, Reddy VS,
  • Chaurasia A, Sharma RP, Altosaar I, Ananda Kumar P (2000).
  • Transgenic tomato plants resistant to fruit borer (Helicoverpa
  • armigera Hübner). Crop Prot 19: 307–312. Mao J, Zeng F (2014). Plant-mediated RNAi of a gap gene-enhanced
  • tobacco tolerance against the Myzus persicae. Transgenic Res 23: 389–396. Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011). Cotton plants
  • expressing CYP6AE14 double-stranded RNA show enhanced
  • resistance to bollworms. Transgenic Res 20: 665–673. Maqbool SB, Riazuddin S, Loc TN, Gatehouse JA, Chritou P (2001).
  • Expression of multiple insecticidal genes confers broad
  • resistance against a range of different insect pests. Mol Breed 7: 85–93. McPherson SA, Perlak FJ, Fuchs RL, Marrone PG, Lavrik PB,
  • Fischhoff DA (1988). Characterization of the coleopteran
  • specific protein gene of Bacillus thuringiensis var. tenebrionis.
  • Biotechnology 6: 61–66. Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011).
  • Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus
  • thuringiensis in transgenic chickpea (Cicer arietinum L.) for
  • improved resistance to pod borer insect Helicoverpa armigera.
  • Euphytica 182: 87–102. Messeguer J (2003). Gene flow assessment in transgenic plants. Plant
  • Cell Tiss Org 73: 201–212. Messeguer J, Marfa V, Catala MM, Guiderdoni E, Mele E (2004). A
  • field study of pollen-mediated gene flow from Mediterranean
  • GM rice to conventional rice and the red rice weed. Mol Breed 13: 103–112. Morán R, García R, López A, Zaldşa Z, Mena J, García M, Armas R,
  • Somonte D, Rodríguez J, Gómez M et al. (1998). Transgenic
  • sweet potato plants carrying the delta-endotoxin gene
  • from Bacillus thuringiensis var. tenebrionis. Plant Sci 139: 175– 184. Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Krishnaiah NV, Sarma
  • NP, Bown DP, Gatehouse JA, Reddy VD, Rao KV (2003).
  • Transgenic indica rice resistant to sap-sucking insects. Plant
  • Biotechnol J 1: 231–240. Newell CA, Lowe JM, Merryweather A, Rooke LM, Hamilton WDO
  • (1995). Transformation of sweet potato (Ipomoea batatas (L.)
  • Lam.) with Agrobacterium tumefaciens  and regeneration of
  • plants expressing cowpea trypsin inhibitor and snowdrop
  • lectin. Plant Sci 107: 215–227. Nicolia A, Manzo A, Veronesi F, Rosellini D (2013). An overview
  • of the last 10 years of genetically engineered crop safety
  • research. Crit Rev Biotechnol 34: 77–88. Normander B, Christensen BB, Molin S, Kroer N (1998). Effect of
  • bacterial distribution and activity on conjugal gene transfer
  • on the phylloplane of the bush bean (Phaseolus vulgaris). Appl
  • Environ Microbiol 64: 1902–1909. Noteborn HPJM, Bienenmann-Ploum ME, van den Berg JHJ,
  • Alink GM, Zolla L, Reynaerts A, Pensa M, Kuiper HA (1995).
  • Safety assessment of the Bacillus thuringiensis insecticidal
  • crystal protein Cry1A(b) expressed in transgenic tomatoes.
  • In: Engel KH, Takeoka GR, Teranishi R, editors. Genetically
  • Modified Foods: Safety Aspects, ACS Symposium Series 605.
  • Washington, DC, USA: American Chemical Society, pp. 134– 147. Oberhauser KS, Prysby MD, Mattila HR, Stanley-Horn DE, Sears
  • MK, Dively G, Olson E, Pleasants JM, Lam WF, Hellmich RL
  • (2001). Temporal and spatial overlap between monarch larvae
  • and corn pollen. P Natl Acad. Sci. USA 98: 11913–11918. Oerke EC (2006). Crop losses to pests. J Agr Sci 144: 31–43. Orr DB, Landis DL (1997). Oviposition of European Corn Borer
  • (Lepidoptera: Pyralidae) and impact of natural enemy
  • populations in transgenic versus isogenic corn. J Econ Entomol Özcan S, Firek S, Draper J (1993). Selectable marker genes engineered
  • for specific expression in target cells for plant transformation.
  • Bio/Technology 11: 218–221. Palm CJ, Donegan K, Harris D, Seidler RJ (1994). Quantification in
  • soil of Bacillus thuringiensis var. kurstaki δ-endotoxin from
  • transgenic plants. Mol Ecol 3: 145–151. Parrott WA, All JN, Adang MJ, Bailey MA, Boerma HR, Stewart
  • CN Jr (1994). Recovery and evaluation of soybean plants
  • transgenic for a Bacillus thuringiensis var. kurstaki insecticidal
  • gene. In Vitro Cell Dev B 30: 144–149. Peferoen M, Jansens S, Reynaerts A, Leemans J (1990). Potato plants
  • with engineered resistance against insect attack. In: Vayda M,
  • Park W, editors Molecular and Cellular Biology of the Potato.
  • Tucson, AZ, USA: CAB, pp. 193–204. Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate
  • JT, Fischhoff DA (1990). Insect resistant cotton plants.
  • Biotechnology 8: 939–943. Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff, DA
  • (1991). Modification of the coding sequence enhances plant
  • expression of insect control protein genes. P Natl Acad Sci USA 88: 3324–3328. Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson
  • SA, Wyman J, Love S, Reed G, Biever D (1993). Genetically
  • improved potato: Protection from damage by Colorado potato
  • beetles. Plant Mol Biol 22: 313–321. Perr HA (2002). Children and genetically engineered food: potentials and problems. J Pediatr Gastroenterol Nutr 35: 475–486. Poulsen M, Kroghsbo S, Schrİder M, Wilcks A, Jacobsen H, Miller
  • A, Frenzel T, Danier J, Rychlik M, Shu Q et al. (2007a). A 90
  • day safety study in wistar rats fed genetically modified rice
  • expressing snowdrop lectin Galanthus nivalis (GNA). Food
  • Chem Toxicol 45: 350–363. Poulsen M, Schrİder M, Wilcks A, Kroghsbo S, Lindecrona RH,
  • Miller A, Frenzel T, Danier J, Rychlik M, Shu Q et al. (2007b).
  • Safety testing of GM-rice expressing PHA-E lectin using a
  • new animal test design. Food Chem Toxicol 45: 364–377. Price RGD, Gatehouse JA (2008). RNAi-mediated crop protection
  • against insects. Trends Biotech 26: 393–400. Puchta H (2003). Marker-free transgenic plants. Plant Cell Tiss Org 74: 23–134. Pushpa R, Raveenderan TS, Rajeswari S, Amalabalu P, Punitha D
  • (2013). Genetic transformation of cry1EC gene into cotton
  • (Gossypium hirsutum L.) for resistance against Spodoptera
  • litura. Afr J Biotechnol 12: 1820–1827. Qaim M (2009). The economics of genetically modified crops. Ann
  • Rev Resource Econom 1: 665–693. Rahman M, Hussain K, Khan MA, Bakhsh A, Rao AQ (2012). An
  • insight of cotton leaf curl virus: a devastating plant pathogenic
  • begomovirus. Pure Appl Bio 1: 52–58. Ramachandran S, Buntin GD, All JN, Tabashnik BE, Raymer PL,
  • Adang MJ, Pulliam DA, Stewart CN Jr (1998). Survival,
  • development, and oviposition of resistant diamondback moth
  • (Lepidoptera: Plutellidae) on transgenic canola producing a
  • Bacillus thuringiensis toxin. J Econ Entomol 91: 1239–1244. Ramesh S, Nagadhara D, Reddy VD, Rao KV (2004). Production of
  • transgenic indica rice resistant to yellow stem borer and sap
  • sucking insects, using super-binary vectors of Agrobacterium
  • tumefaciens. Plant Sci 166: 1077–1085.   Rao AQ, Bakhsh A, Shahzad K, Kiani S, Shahid AA, Husnain
  • T, Riazuddin S (2009). The myth of plant transformation.
  • Biotech Adv 27: 753–763. Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D,
  • Williams S, Christou P, Bharathi M, Bown DP et al. (1998).
  • Expression of snowdrop lectin (GNA) in transgenic rice
  • plants confers resistance to rice brown planthopper. Plant J 15: 469–477. Ricroch AE, Berge JB, Kuntz M (2011). Evaluation of genetically
  • engineered crops using transcriptomic, proteomic, and
  • metabolomic profiling techniques. Plant Physiol 155: 1752– 1761. Rischer H, Oksman-Caldentey KM (2006). Unintended effects
  • in genetically modified crops: revealed by metabolomics?
  • Trends Biotechnol 24: 102–104. Ross MA, Lembi CA (1985). Applied Weed Science. Minneapolis,
  • MN, USA: Burgess Publishing Co. Sagstad A, Sanden M, Haugland O, Hansen AC, Olsvik PA, Hemre
  • GI (2007). Evaluation of stress- and immune-response
  • biomarkers in Atlantic salmon, Salmo salar L. fed different
  • levels of genetically modified maize (Bt maize), compared
  • with its near-isogenic parental line and a commercial suprex
  • maize. J Fish Dis 30: 201–212. Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006). Transgenic
  • rice expressing Allium sativum leaf lectin with enhanced
  • resistance against sap-sucking insect pests. Planta 223: 1329– 1343. Salm T, Bosch D, Hone G, Feng L, Munstreman E, Bakker P, Stiekems
  • WJ, Visser B (1994). Insect resistance of transgenic plants that
  • express modified Bacillus thuringiensis cry1Ab and cry1C
  • genes. A resistance management strategy. Plant Mol Biol 26: 51–59. Sanyal I, Singh AK, Kaushik M, Amla DV (2005). Agrobacterium
  • mediated transformation of chickpea (Cicer arietinum L.) with
  • Bacillus thuringiensis  cry1Ac gene for resistance against pod
  • borer insect Helicoverpa armigera. Plant Sci 168: 1135–1146. Saxena D, Stotzky G (2000). Insecticidal toxin from Bacillus
  • thuringiensis is released from roots of transgenic Bt corn in
  • vitro and in situ. FEMS Microbiol Ecol 33: 35–39. Schnepf E, Crickmore N, Lereclus D, Baum J, Feitelson D, Zeigler
  • R, Dean DH (1998). Bacillus thuringiensis and its pesticidal
  • crystal proteins. Microbiol Mol Biol R 62: 775–806. Schrİder M, Poulsen M, Wilcks A, Kroghsbo S, Miller A, Frenzel
  • T, Danier J, Rychlik M, Emami K, Gatehouse A et al. (2007).
  • A 90-day safety study of genetically modiŞed rice expressing
  • Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats.
  • Food Chem Toxicol 45: 339–349. Sengupta S, Chakraborti D, Mondal HA, Das S (2010). Selectable
  • antibiotic resistance marker gene-free transgenic rice
  • harbouring the garlic leaf lectin gene exhibits resistance to sap
  • sucking planthoppers. Plant Cell Rep 29: 261–271. Séralini G, Cellier D, De Vendomois JS (2007). New analysis of a rat
  • feeding study with a genetically modiŞed maize reveals signs
  • of hepatorenal toxicity. Arch Environ Contam Toxicol 52: 596–602. Séralini GE, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M,
  • Hennequin D, Spiroux de Vendômois J (2012). Long term
  • toxicity of a Roundup herbicide and a Roundup-tolerant
  • genetically modiŞed maize. Food Chem Toxicol 50: 4221–4231. Shelton AM, Naranjo SE, Romeis J, Hellmich RL, Wolt JD, Federici
  • BA, Albajes R, Bigler F, Burgess EP, Dively GP et al. (2009).
  • Appropriate analytical methods are necessary to assess non
  • target effects of insecticidal proteins in GM crops through
  • metaanalysis. Environ Entomol 38: 1533–1538. Shelton AM, Tang JD, Roush RT, Metz TD, Earle ED (2000). Field
  • tests on managing resistance to Bt-engineered plants. Nat
  • Biotechnol 18: 339–342. Sims SR (1995). Bacillus thuringiensis var. kurstaki CryIAc protein
  • expressed in transgenic cotton: effects on beneficial and other
  • non-target insects. Southwestern Entomol 20: 493–500. Sims SR, Ream JE (1997). Soil inactivation of the Bacillus thuringiensis subsp. kurstaki CryIIA insecticidal protein within transgenic cotton tissue: laboratory and field studies. J Agric Food Chem 45: 1502–1505. Singh OV, Ghai S, Paul D, Jain RK (2006). Genetically modified crops: success, safety assessment and public concern. Appl
  • Microbiol Biotechnol 71: 598–607.  Stewart CN Jr, Adang MJ, All JA, Raymer PL, Ramachandran
  • S, Parrott WA (1996). Insect control and dosage effects in
  • transgenic canola containing a synthetic Bacillus thuringiensis
  • cryIAC gene. Plant Physiol 112: 115–120. Stewart CN Jr, Halfhill MD, Warwick SI (2003). Transgene
  • introgression from genetically modified crops to their wild
  • relatives. Nat Rev Genet 4: 806–817. Stewart SD, Adamczyk JJ Jr, Knighten KS, Davis FM (2001). Impact
  • of Bt cottons expressing one or two insecticidal proteins of
  • Bacillus thuringiensis Berliner on growth and survival of
  • noctuid (Lepidoptera) larvae. J Econ Entomol 94: 752–760. Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999).
  • Expression of the insecticidal lectin from snowdrop (Galanthus
  • nivalis agglutinin; GNA) in transgenic wheat plants: effects on
  • predation by the grain aphid Sitobion avenae. Mol Breed 5: 65–73. Stotzky G (2004). Persistence and biological activity in soil of the
  • insecticidal proteins from Bacillus thuringiensis, especially
  • from transgenic plants. Plant Soil 266: 77–89. Stotzky G, Saxena D (2009). Is molecular “pharming” a potential
  • hazard to the environment? In: Halley GT, Fridian YT, editors.
  • Environmental Impact Assessments. New York, NY, USA:
  • Nova Science Publishers, pp. 77–86. Svitashev SK, Somers DA (2001). Genomic interspersions determine
  • the size and complexity of transgene loci in transgenic plants
  • produced by micro projectile bombardment. Genome 44: 691–697. Tabashnik BE (1994). Evolution of resistance to Bacillus thuringiensis.
  • Ann Rev Entomol 39: 47–79. Tabashnik BE, Finson N, Johnson MW, Moar WJ (1993). Resistance
  • to toxins from Bacillus thuringiensis subsp. kurstaki causes
  • minimal cross-resistance to B. thuringiensis subsp. aizawai in
  • diamondback moth (Lepidoptera: Plutellidae). Appl Environ
  • Microbiol 59: 1332–1335. Tang K, Tinjuangjun P, Xu Y, Sun X, Gatehouse JA, Ronald PC, Qi H,
  • Xinggui Lu, Christou P, Kohli A (1999). Particle-bombardment
  • mediated co-transformation of elite Chinese rice cultivars with
  • genes conferring resistance to bacterial blight and sap-sucking
  • insect pests. Planta 208: 552–563. Tang W, Chen H, Xu CG, Li XH, Lin YJ, Zhang QF (2006).
  • Development of insect-resistant transgenic indica rice with a
  • synthetic cry1C* gene. Mol Breed 18: 1–10. Tapp H, Stotzky G (1998). Persistence of the insecticidal toxin
  • from Bacillus thuringiensis subsp. kurstaki from soil. Soil Biol
  • Biochem 30: 471–476. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne
  • H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel
  • A et al. (2011). RNA interference in Lepidoptera: an overview
  • of successful and unsuccessful studies and implications for
  • experimental design. J Insect Physiol 57: 231–245. Tohidfar M, Ghareyazie B, Mosavi M, Yazdani S, Golabchian R
  • (2008). Agrobacterium-mediated transformation of cotton
  • (Gossypium hirsutum) using a synthetic cry1Ab gene for
  • enhanced resistance against Heliothis armigera. Iranian J
  • Biotechnol 6: 164–173. Tohidfar M, Zare N, Jouzani GS, Eftekhari SM (2013). Agrobacterium
  • mediated transformation of alfalfa (Medicago sativa) using
  • a synthetic cry3a gene to enhance resistance against alfalfa
  • weevil. Plant Cell Tiss Org 113: 227–235. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D,
  • Bucher G (2008). Exploring systemic RNA interference in
  • insects: a genome-wide survey for RNAi genes in Tribolium.
  • Genome Biol 9: R10. Umbeck P, Johnson G, Barton K, Swain W (1987). Genetically
  • transformed cotton (Gossypium hirsutum L) plants. Nat
  • Biotechnol 5: 263–266. Upadhyaya CP, Nookaraju A, Gururani MA, Upadhyaya DC, Kim
  • D, Park SW (2010). An update on the progress towards the
  • development of marker-free transgenic plants. Bot Stud 51: 277–292. Vaeck M, Reynaerts A, Hofte H, Jansens S, Beukleer MD, Dean C
  • (1987). Transgenic plants protected from insect attack. Nature Vajhala SKC, Sadumpati VK, Nunna HR, Sateesh Puligundla SK,
  • Vudem DR, Khareedu VR (2013). Development of transgenic
  • cotton lines expressing Allium sativum agglutinin (ASAL) for
  • enhanced resistance against major sap-sucking pests. PLoS One 8: e72542. Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S,
  • Groth M, Howe A, Johnson S, Kolacz K et al. (2005). A
  • method of controlling corn rootworm feeding using a Bacillus
  • thuringiensis protein expressed in transgenic maize. Crop Sci 45: 931–938. Waltz E (2009). Battlefield. Nature 461: 27–32. Wang H, Ye Q, Wang W, Wu L, Wu W (2006). Cry1Ab protein
  • from Bt transgenic rice does not residue in rhizosphere soil.
  • Environ Pollut 143: 449–455. Wang Z, Zhang K, Sun X, Tang K, Zhang J (2005). Enhancement of
  • resistance to aphids by introducing the snowdrop lectin gene
  • GNA into maize plants. J Biosci 30: 627–638. Warwick SI, Legere A, Simard MJ, James T (2008). Do escaped
  • transgenes persist in nature? The case of an herbicide resistance
  • transgene in a weedy Brassica rapa population. Mol Ecol 17: 1387–1395. Weber TE, Richert BT (2001). Grower-finisher growth performance
  • and carcass characteristics including attempts to detect
  • transgenic plant DNA and protein in muscle from pigs fed
  • Potrykus I (1996). Transgenic Indica rice breeding line IR58
  • expressing a synthetic cryIA(b) gene from Bacillus thuringiensis
  • provides eVective insect pest control. Bio/Technology 14: 171– 176. Yamamoto T, McLaughlin RE (1981). Isolation of a protein from the
  • parasporal crystal of Bacillus thuringiensis var. kurstaki toxic
  • to the mosquito larva Aedes taeniorhynchus. Biochem Biophys
  • Res Commun 103: 414–421. Yarasi B, Sadumpati V, Immanni CP, Vudem DR, Khareedu VR
  • (2008). Transgenic rice expressing Allium sativum leaf
  • agglutinin (ASAL) exhibits high-level resistance against major
  • sap-sucking pests. BMC Plant Biol 8: 102. Yonemochi C, Fujisaki H, Harada C, Kusama T, Hanazumi M (2002).
  • Evaluation of transgenic event CBH 351 (StarLink) corn in
  • broiler chicks. Anim Sci J 73: 221–228. Yoshimura S, Komatsu M, Kaku K, Hori M, Ogawa T, Muramoto K,
  • Kazama T, Ito Y, Toriyama K (2012). Production of transgenic
  • rice plants expressing Dioscorea batatas tuber lectin 1 to confer
  • resistance against brown planthopper. Plant Biotechnol 29: 501–504. Zhang BH, Pan XP, Guo TL, Wang QL, Anderson TA (2005).
  • Measuring gene flow in the cultivation of transgenic cotton
  • (Gossypium hirsutum L.) Mol Biotechnol 31: 11–20. Zhang M, Zhuo Q, Tian Y, Piao J, Yang X (2013). Long-term toxicity
  • study on transgenic rice with Cry1Ac and sck genes. Food
  • Chem Toxicol 63: 76–83. Zhang OJ,  Li C, Liu SK, Lai D, Qi QM, Lu CG (2013). Breeding
  • and identification of insect-resistant rice by transferring two
  • insecticidal genes, sbk and sck. Rice Sci 20: 19–24. Zhao CY, Yuan ZQ, Qin HM, Tian YC (2001). Studies on transgenic
  • tobacco plants expressing two kinds of insect resistant genes.
  • Sheng Wu Gong Cheng Xue Bao 17: 273–277 (in Chinese with
  • English abstract). Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM
  • (2003). Transgenic plants expressing two Bacillus thuringiensis
  • toxins delay insect resistance evolution. Nat Biotechnol 21: 1493–1497. Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li
  • S (2012). Improvement of pest resistance in transgenic tobacco
  • plants expressing dsRNA of an insect-associated gene  EcR.
  • PLoS One 7:e38572. Zhuo Q, Chen X, Piao J, Gu L (2004). Study on food safety of
  • genetically modified rice which expressed cowpea trypsin
  • inhibitor by 90 day feeding test on rats. Wei Sheng Yan Jiu 33:
  • 176–179 (in Chinese with English abstract).
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK