Investigation of root-knot nematode (Meloidogyne spp.) resistance in almond rootstocks with DNA markers

Seven almond varieties, Ferragnes, Nemaguard, AB3 (Amygdalus orientalis Mill.), GN22, GF677, Myrobalan(Prunus cerasifera),and Pissardi nigra, and F1 crossbreed almonds, Ferragnes × Pissardi nigra, Ferragnes × Myrobalan, Ferragnes × GN22, Nemaguard × GF677, Myrobalan × AB3 (Prunus dulcis Mill.), Myrobalan × Ferragnes, Pissardi nigra × AB3, and GF677 × Myrobalan, were used to determine resistance against root-knot nematode (RKN) (Meloidogyne spp.) using DNA markers. Parental lines and 316 F1 plants were tested with SSR (plgms8, plgms9, and plgms19) and STS (STS-OPS14a, STS-834b) markers. It was found that plgms19 exhibited 76%, 77.01%, 73.13%, and 86.6% inheritance of resistance in the Ferragnes × Pissardi nigra, Ferragnes × Myrobalan, Ferragnes × GN22, and Nemaguard × GF677 F1 populations, respectively. No resistance was detected in the Nemaguard × GF677 population with the plgms8 marker. Since the plgms19 and STS-834b primers were found to be effective at high ratios in determining resistance to RKN in the Nemaguard × GF677 F1 population, the use of these markers could be included in breeding studies. It was also detected that the STS-OPS14a primer is appropriate to use for determining the sensitivity to RKN in almond rootstocks.

Investigation of root-knot nematode (Meloidogyne spp.) resistance in almond rootstocks with DNA markers

Seven almond varieties, Ferragnes, Nemaguard, AB3 (Amygdalus orientalis Mill.), GN22, GF677, Myrobalan(Prunus cerasifera),and Pissardi nigra, and F1 crossbreed almonds, Ferragnes × Pissardi nigra, Ferragnes × Myrobalan, Ferragnes × GN22, Nemaguard × GF677, Myrobalan × AB3 (Prunus dulcis Mill.), Myrobalan × Ferragnes, Pissardi nigra × AB3, and GF677 × Myrobalan, were used to determine resistance against root-knot nematode (RKN) (Meloidogyne spp.) using DNA markers. Parental lines and 316 F1 plants were tested with SSR (plgms8, plgms9, and plgms19) and STS (STS-OPS14a, STS-834b) markers. It was found that plgms19 exhibited 76%, 77.01%, 73.13%, and 86.6% inheritance of resistance in the Ferragnes × Pissardi nigra, Ferragnes × Myrobalan, Ferragnes × GN22, and Nemaguard × GF677 F1 populations, respectively. No resistance was detected in the Nemaguard × GF677 population with the plgms8 marker. Since the plgms19 and STS-834b primers were found to be effective at high ratios in determining resistance to RKN in the Nemaguard × GF677 F1 population, the use of these markers could be included in breeding studies. It was also detected that the STS-OPS14a primer is appropriate to use for determining the sensitivity to RKN in almond rootstocks.

___

  • Akalın Ş (1952). Büyük Bitkiler Kılavuzu. Cilt 1. Ankara, Turkey: Güzel Sanatlar Matbaası (in Turkish).
  • Atlı HS (2010). GF677 ve GN22 Badem Anaçlarının Çelikle Çoğaltılma Durumlarının Karşılaştırılması. Gaziantep, Turkey: Antepfıstığı Araştırma Enstitüsü Müdürlüğü (in Turkish).
  • Bayrak S, Yılmaz Ö (2009). Ceviz-badem yetiştiriciliği. Ankara, Turkey: Rekmay Reklam ve Tanıtım Ltd. (in Turkish).
  • Boerma HR, Hussey RS (1992). Breeding plants for resistance to nematodes. J Nematol 24: 242–252.
  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Poizat C, Dirlewanger E, Kleinhentz M, Lafargue B, Laigret F, Esmenjaud D (2004a). Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108: 765–773.
  • Claverie M, Dirlewanger E, Bosselut N, Ghelder VC, Voisin R, Kleinhentz M, Lafargue B, Abad P, Rosso MN, Chalhoub B et al. (2011). The Ma gene for complete-spectrum resistance to Meloidogyne species in Prunus is a TNL with a huge repeated C-terminal post-LRR region. Plant Physiol 156: 779–792.
  • Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche C, Chalhoub B et al. (2004b). High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109: 1318–1327.
  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECR (2005). An introduction to markers, quantitative trait loci (QTL) mapping, and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142: 169–196.
  • Devran Z, Söğüt MA (2009). Distribution and identification of root- knot nematodes from Turkey. J Nematol 41: 128–133.
  • Devran Z, Söğüt MA (2011). Characterizing races of Meloidogyne incognita, M. javanica and M. arenaria in the West Mediterranean region of Turkey. Crop Prot 30: 451–455.
  • Doyle JJ, Doyle JL (1987). A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11–15.
  • Esmenjaud D, Minot JC, Voisin R (1996). Effect of durable inoculum pressure and high temperature on root galling, nematode numbers and survival of Myrobalan plum genotypes (Prunus cerasifera Ehr.) highly resistant to Meloidogyne spp. Theor Appl Genet 92: 873–879.
  • Esmenjaud D, Minot JC, Voisin R, Pinochet J, Simard MH, Salesses G (1997). Differential response to root-knot nematodes in Prunus species and correlative genetic implications. J Nematol 29: 372–380.
  • Esmenjaud D, Minot JC, Voisin R, Salesses G, Poupet R, Onesto JP (1993). Assessment of a method using plantlets grown from in vitro for studying resistance of Prunus cerasifera Ehr. (Myrobalan plum) to Meloidogyne spp. Nematropica 23: 41–48.
  • Gur A, Zamir D (2004). Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2: e245.
  • Heckenberger M, Muminovic J, Rouppevan der Voort J, Peleman J, Bohn M, Melchinger AE (2006). Identification of essentially derived varieties from biparental crosses of homogenous lines: III. AFLP data from maize inbreds and comparison with SSR data. Mol Breeding 17: 111–125.
  • Kester D, Gradziel T, Graselly C (1991). Almonds (Prunus). In: Moore J, Ballington J, editors. Genetic Resources of Temperate Fruit and Nut Crops. Wageningen, the Netherlands: ISHS, pp. 701–758.
  • Lamberti F (1979). Economic importance of Meloidogyne spp. in subtropical and Mediterranean climates. In: Lamberti F, Taylor CE, editors. Root-Knot Nematodes (Meloidogyne spp.): Systematics, Biology and Control. New York, NY, USA: Academic Press, pp. 342–357.
  • Layne REC (1987). Peach rootstocks. In: Rom RC, Carlson RF, editors. Rootstocks for Fruit Crops. New York, NY, USA: Wiley, pp. 185–216.
  • Lecouls AC, Bergougnoux V, Rubio-Cabetas MJ, Bosselut N, Voisin R, Poessel JL, Faurobert M, Bonnet A, Salesses G, Dirlewanger E et al. (2004). Marker-assisted selection for the wide-spectrum resistance to root-knot nematodes conferred by the Ma gene from Myrobalan plum (Prunus cerasifera) in interspecific Prunus material. Mol Breeding 13: 113–124.
  • Lecouls AC, Salesses G, Minot JC, Voisin R, Bonnet A, Esmenjaud D (1997). Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor Appl Genet 95: 1325–1334.
  • Lopez-Perez JA, Strange ML, Kaloshian I, Ploeg AT (2006). Differential response of MI gene resistant tomato rootstocks to root- knot nematodes (Meloidogyne incognita). Crop Prot 25: 382–388.
  • Nyczepir AP (1991). Nematode management strategies in stone fruits in the United States. J Nematol 23: 334–341.
  • Özarslandan A, Elekçioğlu İH (2010). Identification of root- knot nematode species (Meloidogyne spp.) (Nemata: Meloidogynidae) collected from different parts of Turkey by molecular and morphological methods. Turk J Entomol 34: 323–335.
  • Rafalski J, Tingey S (1993). Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet 9: 275– 280.
  • Ribaut JM, Hoisington D (1998). Marker-assisted selection: new tools and strategies. Trends Plant Sci 3: 236–239.
  • Sasser JN (1977). Worldwide dissemination and importance of the root-knot nematodes Meloidogyne spp. J Nematol 22: 585–589.
  • Söğüt MA, Elekçioğlu İH (2000). Meloidogyne incognita Chitwood Nemata: Heteroderidae) ırk-2’nin Farklı Domates Çeşitlerinde Bazı Biyolojik Özellikleri Üzerine Araştırmalar. Türkiye Entomoloji Dergisi 24: 113–124 (in Turkish).
  • Tanksley SD, McCouch SR (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063– 1066.
  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989). RFLP mapping in plant breeding: New tools for an old science. Nat Biotechnol 7: 257–263.
  • Trudgill DL, Blok VC (2001). Apomictic polyphagous root knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39: 53–77.
  • Vrain TC (1999). Engineering natural and synthetic resistance for nematode management. J Nematol 31: 424–436.
  • Yamamoto T, Hayashi T (2002). New root-knot nematode resistance genes and their STS markers in peach. Sci Hortic-Amsterdam 96: 81–90.
  • Yücel S, Özarslandan A, Çolak A, Ay T, Can C (2007). Effect of solarization and fumigant applications on soil borne pathogens and root-knot nematodes in greenhouse-grown tomato in Turkey. Phytoparasitica 35: 450–456.
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK