Evaluation of germplasm in Solanum section Lycopersicon for tomato taste improvement

Evaluation of germplasm in Solanum section Lycopersicon for tomato taste improvement

The genetic potential of accessions from Solanum section Lycopersicon (S. lycopersicum L., S. lycopersicum var. cerasiforme, Spimpinellifolium L., and S. habrochaites Knaap & Spooner) for breeding tomato taste has been studied in three environments with clonalreplicates. The environment clearly affected the accumulation and level of variation of sugars and acids and derived variables througha direct effect. It seems that photosynthetically active radiation would exert a major effect on sugar accumulation while in the caseof organic acids the effect of temperature might be more important. Even more, important genotype × environment interactions canconsiderably modify the real value of germplasm, being considerably higher in wild species. The environment affected not only meancontents but also the levels of variation. Thus, the need to develop multienvironmental screening programs is suggested to identifysolid sources of variation. An important intraaccession variability was also found in wild germplasm, emphasizing the need to analyzea high number of plants per accession in order to identify sources of variation. Accessions with a significant genotypic contribution tothe accumulation of sucrose within the Lycopersicon group were identified and may be interesting to analyze the regulation of vacuolarinvertase. Accessions with different genotypic contributions to citric, malic, and glutamic acid accumulation have also been identified.These accessions will be valuable for the development of breeding programs considering the acid component of taste. Additionally, thesegenetic resources will be interesting to study the regulation of the tricarboxylic acid cycle and the gamma-aminobutyric acid shunt.

___

  • Baldwin EA, Scott JW, Einstein M, Malundo TMM, Carr BT, Shewfelt RL, Tandon KS (1998). Relationship between sensory and instrumental analysis for tomato flavor. J Amer Soc Hort Sci 123: 906-915.
  • Barrantes W, López-Casado G, García-Martínez S, Alonso A, Rubio F, Ruiz JJ, Fernández-Muñoz R, Granell A, Monforte AJ (2016). Exploring new alleles involved in tomato fruit quality in an introgression line library of Solanum pimpinellifolium. Front Plant Sci 7: 1172.
  • Bennett AB (2012). Taste: Unraveling tomato flavor. Curr Biol 22: R443-R444.
  • Bertin N, Guichard S, Leonardi C, Longuenesse JJ, Langlois D, Navez B (2000). Seasonal evolution of the quality of fresh glasshouse tomatoes under Mediterranean conditions, as affected by air vapour pressure deficit and plant fruit load. Ann Bot 85: 741-750.
  • Bruhn CM, Feldman N, Garlitz JH, Ivans E, Marshall M, Riley A, Thurber D, Williamson E (1991). Consumer perception of quality: apricots, cantaloupes, peaches, pears, strawberries and tomatoes. J Food Qual 14: 187-195.
  • Bucheli P, Voirol E, Torre RR, Lopez J, Rytz A, Tanksley SD, Petiard V, de la Torre R (1999). Definition of nonvolatile markers for flavor of tomato (Lycopersicon esculentum Mill.) as tools in selection and breeding. J Agric Food Chem 47: 659-664.
  • Cano EA, Pérez-Alfocea F, Moreno V, Caro M, Bolarín MC (1998). Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture. Plant Cell Tissue Organ Cult 53: 19-26.
  • Causse M, Buret M, Robini K, Verschave P (2003). Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J Food Sci 60: 2342-2350.
  • Cebolla-Cornejo J, Rosell S, Valc M, Serrano E, Beltr J, Nuez F, Valencia D (2011). Evaluation of genotype and environment effects on taste and aroma flavor components of Spanish fresh tomato varieties. J Agric Food Chem 59: 2440-2450.
  • Cebolla-Cornejo J, Valcárcel M, Herrero-Martínez JM, Roselló S, Nuez F (2012). High efficiency joint CZE determination of sugars and acids in vegetables and fruits. Electrophoresis 33: 2416-2423.
  • Chetelat RT, DeVerna JW, Bennett AB (1995). Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato. Theor Appl Genet 91: 334-339.
  • Davies JN, Hobson GE (1981). The constituents of tomato fruit — the influence of environment, nutrition, and genotype. C R C Crit Rev Food Sci Nutr 15: 205-280.
  • De Bruyn JW, Garretsen F, Kooistra E (1971). Variation in taste and chemical composition of the tomato (Lycopersicon esculentum Mill.). Euphytica 20: 214-227.
  • Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C (2013). What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J Exp Bot 64: 1451-1469.
  • Fernie AR, Tadmor Y, Zamir D (2006). Natural genetic variation for improving crop quality. Curr Opin Plant Biol 9: 196-202.
  • Fridman E, Pleban T, Zamir D (2000). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. P Natl Acad Sci USA 97: 4718-4723.
  • Fulton TM, Bucheli P, Voiol E, Lopez J, Petiard V, Tanksley SD (2002). Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127: 163-167.
  • Gautier H, Diakou-Verdin V, Bénard C, Reich M, Buret M, Bourgaud F, Poëssel JL, Caris-Veyrat C, Génard M (2008). How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J Agric Food Chem 56: 1241-1250.
  • Haggard JE, Johnson EB, St. Clair DA (2013). Linkage relationships among multiple QTL for horticultural traits and late blight (P. infestans) resistance on chromosome 5 introgressed from wild tomato Solanum habrochaites. G3-Genes Genom Genet 3: 2131-2146.
  • Hernández M, Rodríguez E, Díaz C (2008). Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Eur Food Res Technol 226: 423–435.
  • Kader AA, Stevens MA, Albright-Holton M, Morris LL, Algazi M (1977). Effect of fruit ripeness when picked on flavor and composition in fresh market tomatoes. J Am Soc Hortic Sci 102: 724-731.
  • Koehler PE, Kays SJ (1991). Sweet potato flavor: quantitative and qualitative assessment of optimum sweetness. J Food Qual 14: 241–249.
  • Kortstee AJ, Appeldoorn NJG, Oortwijn MEP, Visser RGF (2007). Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives. Planta 226: 929-939.
  • Leiva-Brondo M, Valcárcel M, Cortés-Olmos C, Roselló S, CebollaCornejo J, Nuez F (2012). Exploring alternative germplasm for the development of stable high vitamin C content in tomato varieties. Sci Hortic (Amsterdam) 133: 84-88.
  • Leiva-Brondo M, Valcarcel M, Martí R, Roselló S, Cebolla-Cornejo J (2016). New opportunities for developing tomato varieties with enhanced carotenoid content. Sci Agric 73: 512-519.
  • Levin I, Lalazar A, Bar M, Schaffer AA (2004). Non GMO fruit factories: strategies for modulating metabolic pathways in the tomato fruit. Ind Crops Prod 20: 29-36.
  • Matsukura C (2016). Sugar accumulation in tomato fruit and its modification using molecular breeding techniques. In: Ezura H, Ariizumi T, Garcia-Mas J, Rose J, editors. Functional Genomics and Biotechnology in Solanaceae and Cucurbitaceae Crops. Berlin, Germany: Springer, pp. 141-154.
  • Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernandez-Munoz R, Vicente A et al (2012). Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336: 1711-1715.
  • Rick CM (1986). Germplasm resources in the wild tomato. Acta Hortic 190: 39-48.
  • Riga P, Anza M, Garbisu C (2008). Tomato quality is more dependent on temperature than on photosynthetically active radiation. J Sci Food Agric 88: 158-166.
  • Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K et al (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635-641.
  • Schaffer AA, Petreikov M, Miron D, Fogelman M, Spiegelman M, Bnei-Moshe Z, Shen S, Granot D, Hadas R, Dai N et al (1999). Modification of carbohydrate content in developing tomato fruit. HortScience 34: 1024-1027.
  • Stevens MA, Kader AA, Albright-Holton M, Algazi M (1977). Genotypic variation for flavor and composition in fresh market tomatoes. J Am Soc Hort Sci 102: 680-689.
  • Tieman D, Zhu G, Resende MFR, Lin T, Nguyen C, Bies D, Rambla JL, Ortiz KS, Taylor M, Zhang B et al (2017). A chemical genetic roadmap to improved tomato flavor. Plant Sci 355: 391-394.
  • Toor RK, Savage GP, Lister CE (2006). Seasonal variations in the antioxidant composition of greenhouse grown tomatoes. J Food Compos Anal 19: 1-10.