Diversity of avocado (Persea americana Mill.) cultivars from Antioquia (Northeast Colombia) and comparison with a worldwide germplasm collection

Diversity of avocado (Persea americana Mill.) cultivars from Antioquia (Northeast Colombia) and comparison with a worldwide germplasm collection

: In this study, the genetic diversity of 90 avocado (Persea americana Mill) cultivars from Antioquia (Colombia) was comparedto 67 germplasm collection accessions using 14 microsatellites. An average of 4.32 ± 2.0 alleles per locus was found, as observed inprevious studies. The expected and observed heterozygosity ranges were 0.384–0.724 and 0.393–0.686, respectively. The Antioquianavocados were genetically structured according to an analysis of molecular variance test (fixation index (FST) = 0.054, P < 0.00001). Anunweighted pair group method with arithmetic mean (UPGMA) dendrogram with FST paired data produced 2 clusters: one composed byAntioquian avocados and the other by the germplasm collection. Another UPGMA dendrogram with individual Nei–Li distances andadditional STRUCTURE analysis separated the Antioquian avocados into 3 clusters (K = 3). Combining samples from the Colombianand germplasm collections produced K = 2. Genetic differentiations between the Antioquian and worldwide avocado germplasmcollection could be due to crosses within the Antioquian avocados having been enhanced by insect pollinators, whereas avocadosstored in the germplasm collection were constituted by cultivars with known genetic origins. Findings from this study demonstratedthat criollo avocado genetics are unique in Antioquia, since the species has been naturally crossed in the field and its closest accessionis from Guatemala. Nevertheless, it is important to continue genotyping this species in other locations in Colombia from Sylvester andcultivar populations of this crop to determine its origin

___

  • Alcaraz M, Hormaza I (2007). Molecular characterization and genetic diversity in an avocado collection of cultivars and local Spanish genotypes using SSRs. Hereditas 144: 244-253.
  • Ashworth VETM, Clegg MT (2003). Microsatellite markers in avocado (Persea americana Mill.): genealogical relationships among cultivated avocado genotypes. J Hered 94: 407-415.
  • Ashworth VETM, Kobayashi MC, De la Cruz M, Clegg MT (2004). Microsatellite markers in avocado (Persea americana Mill.): development of dinucleotide and trinucleotide markers. Sci Hortic 101: 255-267.
  • Bergh BO, Lahav E (1996). Avocadoes. In: Janick J, Moore JN (editors). Fruit Breeding. Vol. 1. Tree and Tropical Fruits. New York, NY, USA: John Wiley, pp. 113-166.
  • Borrone JW, Schnell RJ, Violi HA, Ploetz RC (2007). Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags. Mol Ecol Notes 7: 439-444.
  • Bost JB, Smith NJH, Crane JH (2013). History, distribution and uses. In: Schaffer B (editor). The Avocado: Botany, Production, and Uses. 2nd ed. Wallingford, UK: CABI Publishing, pp. 10-30.
  • Cañas-Gutiérrez GP, Galindo-López LF, Arango-Isaza RE, Saldamando-Benjumea CI (2015). Diversidad genética de aguacate (Persea americana) en Antioquia. Colombia. Agronomía Mesoamericana 26: 129-143 (in Spanish).
  • Chanderbali AS, Albert VA, Ashworth VTEM, Clegg MT, Litz RE, Soltis DE, Soltis PS (2008). Persea americana (avocado): bringing ancient flowers to fruit in the genomics era. Bioassays 30: 386-396.
  • Chen H, Morrell PL, De la Cruz M, Clegg MT (2008). Nucleotide diversity and linkage disequilibrium in wild avocado (Persea americana Mill.). J Hered 99: 382-389.
  • Corona-Jacome EC, Galindo-Tovar ME, Lee-Espinosa HE, LanderoTorres I (2016). Diversidad genética del aguacate (Persea americana Mill.) en cuatro zonas de su área de dispersión natural. Agroproductividad 6: 80-85 (in Spanish).
  • Davis J, Henderson D, Kobayashi M, Clegg MT (1998). Genealogical relationships among cultivated avocado as revealed through RFLP analyses. J Hered 89: 319-323.
  • Douhan GW, Fuller E, McKee B, Pond E (2011). Genetic diversity analysis of avocado (Persea americana Miller) rootstocks selected under greenhouse conditions for tolerance to phytophthora root rot caused by Phytophthora cinnamomi. Euphytica 182: 209-217.
  • Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611-2620.
  • Fiedler J, Bufler G, Bangerth F (1998). Genetic relationships of avocado (Persea americana Mill.) using RAPD markers. Euphytica 101: 249-255.
  • Freeland J (2005). Molecular Ecology. Chichester, UK: John Wiley.
  • Galindo-Tovar ME, Arzate-Fernández MA (2010). Consideraciones sobre el origen y primera dispersión del aguacate (Persea americana, Lauraceae). Cuadernos de Biodiversidad 33: 11-15.
  • Galindo-Tovar ME, Ogata-Aguilar N, Arzate-Fernández AM (2008). Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genet Resour Crop Evol 55: 441-450.
  • Gross-German E, Viruel MA (2013). Molecular characterization of avocado germplasm with a new set of SSR and ESTSSR markers: genetic diversity, population structure, and identification of race-specific markers in a group of cultivated genotypes. Tree Genet Genomes 9: 539-555.
  • Kovach WL (1998). MVSP: A Multivariate Statistical Package for Windows. Version 3.0. Pentraeth, UK: Kovach Computing Services.
  • Kumar S, Dudley J, Nei M, Tamura M (2008). MEGA: A biologist centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9: 299-306.
  • Kwame A, Akromah R, Ofori FA, Takrama JF, Saada D, Bitton I, Lavi U (2008). Genetic characterization of Ghanaian avocadoes using microsatellite markers. J Am Soc Hortic Sci 133: 801-809.
  • Mhameed S, Sharon D, Kaufman D, Lahav E, Hillel J, Degani C, Lavi U (1997). Genetic relationships within avocado (Persea americana Mill.) cultivars and between Persea species. Theor Appl Genet 94: 279-286.
  • Peakall R, Smouse PE (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 2537-2539.
  • Piry S, Luikart G, Cornuet JM (1999). BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90: 502- 503.
  • Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945- 959.
  • Raymond M, Rousset F (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86: 248-249.
  • Rodríguez M, Jaramillo JG, Orozco J (2009). Colecta de Aguacates criollos colombianos como base para iniciar programas de fitomejoramiento que contribuyan a su competitividad. In: Memorias III Congreso Latinoamericano de Aguacate (in Spanish). Schaffer B, Gil PM, Mickelbart MV, Whiley AW (2013). Ecophysiology.
  • In: Schaffer B (editor). The Avocado: Botany, Production, and Uses. 2nd ed. Wallingford, UK: CABI Publishing, pp. 168-199.
  • Schnell RJ, Brown JS, Olano CT, Power EJ, Krol CA, Kuhn DN, Motamayor JC (2003). Evaluation of avocado germplasm using microsatellite markers. J Am Soc Hortic Sci 128: 881-889. Sharon D, Cregan PB, Mhameed S, Kuharska M, Hillel I, Lahav E, Lavi U (1997). An integrated genetic linkage map of avocado. Theor Appl Genet 95: 911-921.
  • Sneath PH, Sokal RR (1973). Numerical Taxonomy. San Francisco, CA, USA: Freeman.
  • Storey WB, Bergh BO, Zentmyer, GA (1986). The origin, indigenous range, and dissemination of the avocado. California Avocado Society Yearbook 70: 127-133.
  • Torres AM, Bergh BO (1978). Isozymes as indicators of out-crossing among ‘Pinkerton’ seedlings. California Avocado Society Yearbook 62: 103-110.
  • Ying Z, Davenport TL, Faber B, Zhang T (2009). Reevaluation of the role of honeybees and wind on pollination of avocado. J Hortic Sci Biotechnol 83: 255-260.
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Aleksandar ZIVOTIC, Nikola MICIC, Mirjana ZABIC, Borut BOSANCIC, Miljan CVETKOVIC

Effect of cultivar and fertilization on garlic yield and allicin content in bulbs at harvest and during storage

Marijan NECEMER, Mihaela SKRT, Robert VEBERIC, Nataša POKLAR ULRIH, Nina KACJAN MARSIC

Belgin Coşge ŞENKAL, Tansu USKUTOĞLU, Cüneyt CESUR, Volkan ÖZAVCI, Hülya DOĞAN

Identification and validation of microsatellite markers in strawberry tree (Arbutus unedo L.)

Maria FONSECA, Pedro FAZENDA, Jorge CARLIER, José LEITÃO, Ricardo PEREIRA

Nina Kacjan MARSIC, Marijan NECEMER, Robert VEBERIC, Natasa Poklar ULRIH, Mihaela SKRT

Diversity of avocado (Persea americana Mill.) cultivars from Antioquia (Northeast Colombia) and comparison with a worldwide germplasm collection

Librada ALCARAZ, Jose Ignacio HORMAZA, Gloria Patricia CAÑAS GUTIÉRREZ, Rafael Eduardo ARANGO-ISAZA, Clara Inés SALDAMANDO-BENJUMEA

Precision cane meristem management can influence productivity and fruit quality of floricane red raspberry cultivars

Aleksandar ZIVOTIC, Nikola MIĆIĆ, Borut BOSANČIĆ, Miljan CVETKOVIĆ, Mirjana ŽABIĆ

GLORIA PATRICIA CAÑAS-GUTIÉRREZ, Librada ALCARAZ, Jose İgnacio HORMAZA, RAFAEL EDUARDO ARANGO- ISAZA, Clara İnés SALDAMANDO-BENJUMEA

Determination of essential oil components, mineral matter, and heavy metal content of Salvia virgata Jacq. grown in culture conditions

Tansu USKUTOĞLU, Belgin COŞGE ŞENKAL, Volkan ÖZAVCI, Hülya DOĞAN, Cüneyt CESUR

Nematode-resistant, clonal almond rootstock breeding by crossing in Turkey

Canan CAN, Kamil SARPKAYA, Ertuğrul İLİKÇİOĞLU, Sultan Bay TÜRKOĞLU, Mehmet BAŞ, Nergiz ÇOBAN, Ayşe FİDANCI, Halit Seyfettin ATLI