LPS ile Oluşturulan Sepsisli Sıçanlarda Metformin ile Erken Tedavi, Pankreatik Hasarı Azaltır

Bu çalışmada, metforminin lipopolisakkarit (LPS) ile indüklenen sepsis sonrası pankreas dokusu üzerindeki etkilerinin araştırılması amaçlanmıştır. Çalışmada 30 adet Sprague Dawley cinsi erkek sıçan kullanılmıştır. Gruplar 5 adet ve her grupta 6 tane hayvan olacak şekilde; kontrol, sepsis, sepsis+1 saat önce metformin, sepsis+1 saat sonra metformin ve sepsis+3 saat sonra metformin olarak belirlenmiştir. LPS ve metformin dozları sırası ile 5 mg/kg ve 200 mg/kg olarak belirlenmiş olup hayvanlara intraperitoneal olarak uygulanmıştır. LPS enjeksiyonundan 24 saat sonra hayvanların kan örnekleri ve pankreas dokuları cerrahi işlemlerle alınmıştır. Sıçanların serumlarında amilaz, insülin ve glukoz düzeyleri ölçülmüştür. Alınan pankreas dokularında ise malondialdehit (MDA) ve myeloperoksidaz (MPO) düzeyleri ölçülmüştür. Ayrıca pankreas dokuları hematoksilen-eosin (H-E) boyama yöntemi ile histopatolojik olarak değerlendirilmiştir. Sonuçlar incelendiğinde, LPS’nin sıçanlarda sepsis meydana getirdiği ve pankreas dokularında hasar oluşturduğu görülmüştür. Ancak, metforminin tedavi gruplarında bu hasarı önemli ölçüde hafiflettiği tespit edilmiştir. Özellikle, sıçanlara sepsis oluşturulmadan önce uygulanan metforminin daha etkili olduğu, pankreas dokularında koruyucu etkilere sahip olduğu gösterilmiştir.

Early Treatment with Metformin Decreases Pancreatic Damage in Rats with LPS Induced Sepsis

In this study, the effects of metformin on pancreatic tissue after lipopolysaccharide (LPS)-induced sepsis were investigated. 30 Sprague Dawley male rats were used in the study. Five groups were formed: control, sepsis, sepsis+1 hour before metformin, sepsis+1 hour later metformin and sepsis+3 hour later metformin as 6 animals in each group. LPS and metformin was prepared at 5 mg/kg and 200 mg/kg volumes, respectively, and injected intraperitoneally to the rats. Blood samples and pancreas tissues were taken from the rats 24 hours after LPS injection. Amylase, glucose and insulin parameters were measured in serum of rats. Malondialdehyde (MDA) and myeloperoxidase (MPO) parameters in pancreas tissues of rats were evaluated. Pancreatic tissues were examined by hematoxylin-eosin (H-E) staining method histopathologically. When the results were evaluated, it was seen that LPS caused sepsis and pancreatic tissue damage in rats. However, it has been determined that metformin significantly alleviates these damages in the treatment groups. In particular, metformin administered prior to sepsis has been shown to have protective effects in the pancreatic tissues of rats.

___

  • Bone RC. 1991. The pathogenesis of sepsis. Ann Intern Med, 115/6: 457–469.
  • Bosmann M, Ward PA. 2013. The inflammatory response in sepsis. Trends Immunol, 34/3: 129–136.
  • Bradlow HL. 2014. Obesity and the gut microbiome: pathophysiological aspects. Horm Mol Biol Clin Investig, 17/1: 053–061.
  • Cai B, Deitch EA, Ulloa L. 2010. Novel insights for systemic inflammation in sepsis and haemorrhage. Mediators of inflammation, 2010/642462.
  • Cho YK, Choi YH, Kim SH, Lee MG. 2009. Effects of Escherichia coli lipopolysaccharide on the metformin pharmacokinetics in rats. Xenobiotica, 39/12: 946–954.
  • Ding SP, Li JC, Jin C. 2003. A mouse model of severe acute pancreatitis induced with caerulein and lipopolysaccharide. World J Gastroenterol, 9/3: 584–589.
  • Erridge C. 2011. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. British Journal of Nutrition, 105/1: 15–23.
  • Gornall AG, Bardawill CJ, David MM. 1949. Determination of serum proteins by means of the biuret reaction. J Biol Chem, 177/2: 751–766.
  • Houstis N, Rosen ED, Lander ES. 2006. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature, 440/7086: 944–948.
  • Jiang GJ, Han X, Tao YL, Deng YP, Yu JW, Cai J, . . . Sun YN. 2017. Metformin ameliorates insulitis in STZ-induced diabetic mice. PeerJ, e3155.
  • Kim SA, Choi HC. 2012. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells. Biochem Biophys Res Commun, 425/4: 866–872.
  • Klebanoff SJ. 1999. Myeloperoxidase. Proc Assoc Am Physicians, 111/5: 383–389.
  • Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature, 454/7203: 428–435.
  • Murad HAS, Saleh HA, Abdulaziz GS, Abdulsattar MA, Ali SS. 2015. Effect of metformin and pioglitazone on betacatenin and biochemical markers in sitagliptin-induced pancreatitis in diabetic rats. International Journal of Diabetes in Developing Countries, 35/3: 332–339.
  • Nathan C. 2002. Points of control in inflammation. Nature, 420/6917: 846–852.
  • Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry, 95/2: 351–358.
  • Pandey A, Kumar VL. 2016. Protective Effect of Metformin against Acute Inflammation and Oxidative Stress in Rat. Drug Dev Res, 77/6: 278–284.
  • Quaile MP, Melich DH, Jordan HL, Nold JB, Chism JP, Polli JW, ... Rhodes MC. 2010. Toxicity and toxicokinetics of metformin in rats. Toxicol Appl Pharmacol, 243/3: 340– 347.
  • Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu Rev Biochem, 71: 635–700.
  • Ramakrishna BS. 2013. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol, 28/4: 009–017.
  • Saisho Y. 2015. Metformin and Inflammation: Its Potential Beyond Glucose-lowering Effect. Endocr Metab Immune Disord Drug Targets, 15/3: 196–205.
  • Salman ZK, Refaat R, Selima E, El Sarha A, Ismail MA. 2013. The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Eur J Pharmacol, 714/1-3: 448–455.
  • Steimle A, Autenrieth IB, Frick JS. 2016. Structure and function: Lipid A modifications in commensals and pathogens. Int J Med Microbiol, 06/5: 290–301.
  • Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. 1995. Metabolic effects of metformin in non-insulindependent diabetes mellitus. N Engl J Med, 333/9: 550– 554.
  • Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T. 1983. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem, 132: 345–352.
  • Tian YF, He CT, Chen YT, Hsieh PS. 2013. Lipoic acid suppresses portal endotoxemia-induced steatohepatitis and pancreatic inflammation in rats. World Journal of Gastroenterology, 19/18: 2761–2771.
  • Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. 2012. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond), 122/6: 253– 270.
  • Zhou ZY, Ren LW, Zhan P, Yang HY, Chai DD, Yu ZW. 2016. Metformin exerts glucose-lowering action in high-fat fed mice via attenuating endotoxemia and enhancing insulin signaling. Acta Pharmacol Sin, 37/8: 1063–1075.