İHA Tabanlı 3 Boyutlu Verilere Farklı Perspektiflerde Bakış: İTÜ Ayazağa Kampüsü

İnsansız Hava Araçları (İHA), diğer veri üretim yöntemleri ile karşılaştırıldığında son yıllarda maliyet, veri türü ve çözünürlüğü açısından avantajlar sağlamaktadır. Bu kapsamda, İHA verileri klasik ölçme veya haritalama amaçları dışında farklı sektörlerde, araştırmalarda ve platformlarda kullanılmaktadır. İHA verileri, fiziksel temas sağlanmadan sanal ve çevrimiçi platformlar gibi farklı ve yeni alanlarda katılımcılar ile yeryüzü arasında etkileşim sağlamaktadır. Üç boyutlu (3B) veriler, internet sitelerine, oyun motorlarına, animasyon uygulamalarına, masaüstü ve taşınabilir cihazlarda çeşitli uygulamalara entegre edilerek gerçek yeryüzü ile kullanıcılara farklı deneyimler sunabilmektedir. 3B veri paylaşım platformları, İHA tabanlı verilere doğrudan sahip olmadan her kullanıcıya gerçeğe yakın veri üzerinde ölçüm yapma, gezerek bilgi alma, 3B deneyim yaşama, çevrimiçi sosyalleşme ve görüşme kapsamlarında olanaklar sunmakta, alana ulaşım, erişim ve maddiyat konularında her kullanıcıyı ortak paydada buluşturmaktadır. Çalışmanın amacı, İstanbul Teknik Üniversitesi Ayazağa Kampüsü yüksek çözünürlüklü nokta bulutu ve 3B model üretilmesi ile bu verilerin sanal ve çevrimiçi platformlarda farklı perspektiflerde kullanımının gösterilmesidir. Kampüs verileri Metaverse (sanal gerçeklik (VR), artırılmış gerçeklik (AR)), çevrimiçi (bilgi ve gezinme platformu ve çevrimdışı (uçuş simülasyonu, katı model üretimi) gibi farklı uygulamalarda kullanılmak üzere farklı platformlara entegre edilmiştir. Kullanıcılar kampüse fiziksel temas olmadan gezebilmekte, bilgi alabilmekte, etkinlikler düzenleyebilmekte ve deneyim kazanabilmektedir.

Different Perspectives on UAV-Based 3D Data: ITU Ayazağa Campus

Unmanned Aerial Vehicles (UAVs) offer several advantages about cost, data type and resolution compared to other surveying methods. UAV-based data are used in research, and platform apart from classical surveying and mapping. UAV-based data has been used for various fields such as online and virtual environments to create interaction between participants and earth surface without physical contact. 3D data can be integrated into websites, games, animations, and various applications to provide experience for users about the real-world on desktop or mobile devices. 3D data platforms provide to measure, get information, live a 3D experience, socialize and meet, and it brings together users on a common ground in terms of transportation, access and materiality. The high-accuracy of point cloud and 3D model of Istanbul Technical University Ayazağa Campus with UAV-based were produced, and to show these data at different perspectives in the virtual and online environment. Data of campus were used in different application, which are Metaverse (virtual reality (VR), augmented reality (AR)), online (information, navigation), and offline (flight simulation, solid model). Users get information, experiences and tour around without physical contact.

___

  • Ağca, M., Gültekin, N., & Kaya, E. (2020). İnsansız hava aracından elde edilen veriler ile kaya düşme potansiyelinin değerlendirilmesi: Adam Kayalar Örneği, Mersin. Geomatik, 5(2), 134-145.
  • Akay, S. S., Özcan, O., & Balık Şanlı, F. (2022). Quantification and visualization of flood-induced morphological changes in meander structures by UAV-based monitoring. Engineering Science and Technology, an International Journal, 27, 101106. doi: 10.1016/j.jestch.2021.05.020.
  • Akay, S. S., & Ozcan, O. (2017). Volumetric Comparison of UAV-Based Point Clouds Generated from Various Softwares. In International Symposium on GIS Applications in Geography and Geosciences, 2017. Proceedings. (pp. 243).
  • Andaru, R., Cahyono, B. K., Riyadi, G., Istarno Djurdjani Ramadhan, G. R., & Tuntas, S. (2019). The combination of terrestrial LIDAR and UAV photogrammetry for interactıve architectural heritage visualization using unıty 3D game engine. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2(W17), 39-44.
  • Augment. (2022, Haziran 22). Augment platform. Retrieved from https://www.augment.com
  • Bayramoğlu, Z., & Uzar, M. (2023). Performance analysis of rule-based classification and deep learning method for automatic road extraction. International Journal of Engineering and Geosciences, 8(1), 83-97.
  • Berrett, B. E., Vernon, C. A., Beckstrand, H., Pollei, M., Markert, K., Franke, K. W., & Hedengren, J. D. (2021). Large-Scale reality modeling of a university campus using combined UAV and terrestrial photogrammetry for historical preservation and practical use. Drones, 5(4), 136. doi: 10.3390/drones5040136.
  • Cesium. (2022, Haziran 22). Cesium platform. Retrieved from https://cesium.com/platform/cesium-ion/
  • Chang, Y.L., Hou, H.T., Pan, C.Y., Sung, Y.T., & Chang, K. (2015). Apply an augmented reality in a mobile guidance to ıncrease sense of place for heritage places. Educational Technology & Society, 18(2), 166-178.
  • Colomina, I., & Molina, P. (2012). Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97.
  • DJI. (2022, Haziran 22). DJI simulator platform. Retrieved from https://www.dji.com/simulator
  • Erdoğan, A., Kabadayı, A., & Akın, E.S. (2021). Kültürel mirasın fotogrametrik yöntemle 3B modellenmesi: Karabıyık Köprüsü örneği. Türkiye İnsansız Hava Araçları Dergisi, 3(1), 23-27.
  • Gallo, I. G., Martínez-Corbella, M., Sarro, R., Iovine, G., López-Vinielles, J., Hérnandez, M., Robustelli, G., Mateos, R. M., & García-Davalillo, J. C. (2021). An Integration of UAV-Based Photogrammetry and 3D Modelling for Rockfall Hazard Assessment: The Cárcavos Case in 2018 (Spain). Remote Sensing, 13(17), 3450. doi: 10.3390/rs13173450.
  • Gerloni, I. G., Carchiolo, V., Vitello, F. R., Sciacca, E., Becciani, U., Costa, A., ... & Tibaldi, A. (2018, September). Immersive virtual reality for earth sciences. In 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), 2018. Proceedings. (pp. 527-534). IEEE.
  • İTÜ. (2022, Ekim 21). Yerleşkelerimiz. Retrieved from http://tanitim.itu.edu.tr/kesfet/yerleskelerimiz
  • İTÜ Yeşil Kampüs. (2022, Ekim 10). Yeşil kampüs. Retrieved from http://www.yesilkampus.itu.edu.tr/
  • ITUBEE. (2022, Haziran 22). ITU3BEE sanal kampüs projesi. Retrieved from https://web.itu.edu.tr/ozcanork/ ITU3BEE.html
  • Narin, N.G. (2021). A content analysis of the metaverse articles. Journal of Metaverse, 1(1), 17-24.
  • Jaud, M., Grasso, F., Le Dantec, N., Verney, R., Delacourt, C., Ammann, J., Deloffre, J., & Grandjean, P. (2016). Potential of UAVs for monitoring mudf-lat morphodynamics (Application to the Seine Estuary, France). ISPRS International Journal of Geo-Information, 5(4), 50. doi: 10.3390/ijgi5040050.
  • Javernick, L., Brasington, J., & Caruso, B. (2014). Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology, 213, 166-182.
  • Halik, Ł., & Smaczyński, M. (2018). Geovisualisation of relief in a virtual reality system on the basis of low-level aerial ımagery. Pure and Applied Geophysics, 175, 3209-3221.
  • Hamal, S. N. G., Sarı, B., & Ulvi, A. (2020). Using of hybrid data acquisition techniques for cultural heritage a case study of Pompeiopolis. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 55-60.
  • Kalacska, M., Arroyo-Mora, J. P., & Lucanus, O. (2021). Comparing UAS LiDAR and Structure-from-Motion Photogrammetry for Peatland Mapping and Virtual Reality (VR) Visualization. Drones, 5(2), 36. doi: 10.3390/drones5020036.
  • Laksono, D., Aditya, T., & Riyadi, G. (2019). Interactive 3D city visualization from structure motion data using game engine. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-4i(W16), 737-740.
  • Lee, L.H., Braud, T., Zhou, P., Wang, L., Xu, D., Lin, Z., Kumar, A., Bermejo, C., & Hui, P. (2021). All one needs to know about metaverse: a complete survey on technological singularity, virtual ecosystem, and research agenda. Journal of Latex Class Files, 14(8), 1-66. doi: 10.48550/arXiv.2110.05352.
  • Levine, N.M. & Spencer, B.F. Jr. (2022). Post-Earthquake Building Evaluation Using UAVs: A BIM-Based Digital Twin Framework. Sensors, 22(3), 873. doi: 10.3390/s22030873.
  • Lucieer, A., Turner, D., King, D.H. & Robinson, S.A. (2014). Using an Unmanned Aerial Vehicle (UAV) to capturemicro-topography of Antarctic moss beds. International Journal of Applied Earth Observation and Geoinformation, 27, 53-62.
  • Makineci, H. B. (2016). İnsansız hava araçları lidar etkileşimi. Geomatik, 1(1), 19-23.
  • Maraş, E. E. & Nasery, N. (2023). Investigating the length, area and volume measurement accuracy of UAV-Based oblique photogrammetry models produced with and without ground control points. International Journal of Engineering and Geosciences, 8(1), 32-51.
  • Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497.
  • Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatic, 6, 1-15.
  • Özcan, O., Tarı, U., Sunal, G., & Yaltırak, C. (2022, May). Monitoring beachrock and low-altitude aerial photogrammetry-UAV in the northern coast of the Sea of Marmara, Turkey: A tool for coastal evolution and relative sea level change. In 24th EGU General Assembly, 2022. doi: 10.5194/egusphere-egu22-5794.
  • Özcan, O., & Özcan, O. (2021). Automated UAV based multi-hazard assessment system for bridges crossing seasonal rivers. Smart Structures and Systems. 27(1), 35-52.
  • Özkaya, U., Makineci, H. B., Öztürk, Ş., & Orhan, O. (2021). Mozaiklenmiş insansız hava aracı görüntülerinde eksik bölgelerin exemplar iç boyaması ile elde edilmesi. Geomatik, 6(1), 61-68.
  • Potree. (2022, Haziran 22). Potree platform. Retrieved from https://potree.github.io/
  • Rezaldi, Y., Yoganingrum, A., Hanifa, N., Kaneda, Y., Kushadiani, S., Prasetyadi, A., Nugroho, B., & Men Riyanto, A. (2021). Unmanned aerial vehicle (UAV) and photogrammetric technic for 3D tsunamis safety modeling in Cilacap, Indonesia. Applied Sciences, 11(23), 11310. doi: 10.3390/app112311310.
  • Rocca, R. (2021, March). Fault animation with 3D model integrating drone and satellite images. In EGU General Assembly Conference, 2021. Proceedings. doi: 10.5194/egusphere-egu21-8084.
  • Salamí, E., Barrado, C., & Pastor, E. (2014). UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sensing, 6(11), 11051-11080.
  • Sansar. (2022, Haziran 22). Sansar platform. Retrieved from https://www.sansar.com/
  • Scaravetti, D., & Doroszewski, D. (2019). Augmented Reality experiment in higher education, for complex system appropriation in mechanical design. Procedia CIRP, 84(2019), 197-202.
  • Sefercik, U., Kavzoglu, T., Nazar, M., Atalay, C., & Madak, M. (2021). UAV-based 3D virtual tour creation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4(W5-2021), 493-499.
  • Seki, M., Tiryakioğlu, İ., & Uysal, M. (2017). Farklı veri toplama yöntemleriyle yapılan hacim hesaplarının karşılaştırılması. Geomatik, 2(2), 106-111.
  • Senkal, E., Kaplan, G., & Avdan, U. (2021). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on archaeological sites. International Journal of Engineering and Geosciences, 6(2), 81-89.
  • Shervais, S. (2016). Structure from Motion guide for instructors and investigators. Retrieved from https://d32ogoqmya1dw8.cloudfront.net/files/getsi/teaching_materials/high-rez-topo/sfm_guide_instructors_ investigators.v2.pdf
  • Sketchfab. (2022, Haziran 22). Sketchfab platform. Retrieved from https://sketchfab.com
  • Snavely, N., Seitz, S. M., & Szeliski, R. (2007). Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2), 189-210.
  • Şasi, A., & Yakar, M. (2018). Photogrammetric modelling of Hasbey Dar'ülhuffaz (Masjid) using an unmanned aerial vehicle. International Journal of Engineering and Geosciences, 3(1), 6-11.
  • Şenol, H.İ., Yiğit, A.Y., Kaya, Y., & Ulvi, A. (2021). İHA ve yersel fotogrametrik veri füzyonu ile kültürel mirasın 3 boyutlu (3B) modelleme uygulaması: Kanlıdivane Örneği. Türkiye Fotogrametri Dergisi, 3(1), 29-36.
  • Qin, R., Gruen, A., & Huang, X. (2012, November). UAV project-building a reality-based 3D model of the NUS (National University of Singapore) campus. In 33rd Asian Conference on Remote Sensing, 2012. Proceedings. (pp. 26-30).
  • Teke, T. (2016). Unmanned aerial vehicle based visualization of deep excavations using game engines (Doktora Tezi). Ortadoğu Teknik Üniversitesi, Ankara.
  • Turner, I. L., Harley, M. D., & Drummond, C. D. (2016). UAVs for coastal surveying. Coastal Engineering, 114, 19-24.
  • Ulvi, A., & Toprak, A. S. (2016). Investigation of three-dimensional modelling availability taken photograph of the unmanned aerial vehicle; sample of Kanlidivane Church. International Journal of Engineering and Geosciences, 1(1), 1-7.
  • Ulvi, A. (2018). Analysis of the utility of the unmanned aerial vehicle (UAV) in volume calculation by using photogrammetric techniques. International Journal of Engineering and Geosciences, 3(2), 43-49.
  • Ulvi, A., Yakar, M., Yiğit, A. Y., & Kaya, Y. (2020). İHA ve Yersel Fotogrametrik Teknikler Kullanarak Aksaray Kızıl Kilisenin 3b Modelinin ve Nokta Bulutunun Elde Edilmesi. Geomatik, 5(1), 19-26.
  • Yakar, M., Kabadayı, A., Yiğit, A. Y., Çıkıkcı, K., Kaya, Y., & Catin, S. S. (2016). Emir Saltuk Kümbeti fotogrametrik rölöve çalışması ve 3boyutlu modellenmesi. Geomatik, 1(1), 14-18.
  • Yang, J., Yan, G., & Geng, P. (2021, February). Study on 3D printing based on UAV oblique photogrammetry. In IOP Conference Series: Earth and Environmental Science, 676, 012010. doi: 10.1088/1755-1315/676/1/012010.
  • Weißmann, M., Edler, D., & Rienow, A. (2022) Potentials of low-budget microdrones: processing 3d point clouds and images for representing post-industrial landmarks in immersive virtual environments. Frontiers in Robotics and AI, 9, 886240. doi: 10.3389/frobt.2022.886240.
  • Woodget, A.S., Carbonneau, P.E., Visser, F., & Maddock, I. P. (2015). Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Land-form, 40(1), 47-64.