Preliminary Evaluation of Anti-Listerial Bacteriocin-like Peptide Produced by Enterococcus lactis PMD74 Isolated from Ezine Cheese

Enterococcus lactis PMD74 is a novel strain with a notably high antimicrobial activity. The present study evaluated the anti-listerial effect of a bacteriocin-like peptide (BLIP) produced by E. lactis PMD74 isolated from Ezine cheese (PDO). The strain was screened for its antimicrobial activity against 22 indicator strains using both agar spot and well diffusion methods. We observed that the neutralized cell-free supernatant (CFS) of E. lactis PMD74 exhibited varying levels of antimicrobial activity against both closely and distantly related pathogenic strains, with the highest activity displayed against Listeria monocytogenes strains. Although thermostable and resistant to lysozyme treatment, BLIP could be completely inactivated by trypsin, proteinase K, and α-chymotrypsin treatments. BLIP production starts in the early exponential growth phase of E. lactis PMD74 (3 h incubation, 400 AU mL–1 ) and reaches its maximal production (6400 AU mL–1 ) at the end of the exponential growth phase. Moreover, it is stable in the pH range of 2.0 to 7.0. The treatment of cultures of L. monocytogenes ATCC 7644 and Escherichia coli ATCC 26922 with sterilized CFS exhibited bactericidal and bacteriostatic effects, respectively. Furthermore, co-inoculation of L. monocytogenes ATCC 7644 and E. lactis PMD74 in skim milk led to complete loss of viability of L. monocytogenes ATCC 7644. These findings suggest that BLIP produced by E. lactis PMD74 could serve as a promising food preservative agent owing to its bactericidal and bacteriostatic properties.

___

Ahmadova A, Todorov SV, Choiset Y, Rabesona H, Zadi AM, Kuliyev A, Franco BDGDM, Chobert JM, Haertlé T. 2013. Evaluation of antimicrobial activity, probiotic properties and safety of wild strain Enterococcus faecium AQ71 isolated from Azerbaijani Motal cheese. Food Control, 30: 631–641. DOI:10.1016/j.foodcont.2012.08.009.

Al-Nabulsi AA, Osaili TM, Shaker RR, Olaimat AN, Jaradat ZW, Elabedeen NAZ, Holley RA. 2015. Effects of osmotic pressure, acid, or cold stresses on antibiotic susceptibility of Listeria monocytogenes. Food Microbiol., 46: 154–160. DOI: 10.1016/j.fm.2014.07.015.

Aspri M, O’Connor PM, Field D, Cotter PD, Ross P, Hill C, Papademas P. 2017. Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the biocontrol of Listeria monocytogenes in fresh whey cheese. Int. Dairy J., 73: 1–9. DOI: 10.1016/j.idairyj.2017.04.008.

Bauer R, Bekker JP, van Wyk N, du Toit C, Dicks LMT, Kossmann J. 2009. Exopolysaccharide production by lactosehydrolyzing bacteria isolated from traditionally fermented milk. Int J Food Microbio., 131:260–264. DOI:10.1016/ j.ijfoodmicro.2009.02.020.

Belgacem Z, Abriouel H, Ben Omar N, Lucas R, MartínezCanamero M, Gálvez A, Manai M. 2010. Antimicrobial activity, safety aspects, and some technological properties of bacteriocinogenic Enterococcus faecium from artisanal Tunisian fermented meat. Food Control, 21: 462–470. DOI: 10.1016/j.foodcont.2009.07.007.

Bigwood T, Hudson JA, Cooney J, McIntyre L, Billington C, Heinemann JA, Wall F. 2012. Inhibition of Listeria monocytogenes by Enterococcus mundtii isolated from soil. Food Microbiol., 32: 354–360. DOI: 10.1016/ j.fm.2012.07.015.

Botina SG, Sukhodolets VV. 2006. Speciation in bacteria: comparison of the 16S rRNA 208 gene for closely related Enterococcus species. Russ J Genet., 42: 247–251. DOI: 10.1134/S1022795406030033.

Braïek OB, Cremonesi P, Morandi S, Smaoui S, Hani K, Ghrairi T. 2018a. Safety characterisation and inhibition of fungi and bacteria by a novel multiple enterocin-producing Enterococcus lactis 4CP3 strain. Microb Pathog., 118: 32–38. DOI: 10.1016/j.micpath.2018.03.005.

Braïek OB, Morandi S, Cremonesi P, Smaoui S, Hani K, Ghrairi T. 2018b. Safety, potential biotechnological and probiotic properties of bacteriocinogenic Enterococcus lactis strains isolated from raw shrimps. Microb Pathog., 117: 109–117. DOI: 10.1016/j.micpath.2018.02.021.

Braïek OB, Morandi S, Cremonesi P, Smaoui S, Hani K, Ghrairi T. 2018c. Biotechnological potential, probiotic and safety properties of newly isolated enterocin-producing Enterococcus lactis strains. LWT- Food Sci Technol., 92: 361–370. DOI: 10.1016/j.lwt.2018.02.045.

Carlos A, Semedo-Lemsaddek T, Barreto-Crespo M, Tenreiro R. 2010. Transcriptional analysis of virulence-related genes in enterococci from distinct origins. J Appl Microbiol., 108: 1563–1575. DOI: 10.1111/j.1365–2672.2009.04551.x.

Daba H, Lacroix C, Huang J, Simard RE. 1993. Influence of growth conditions on production and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl Environ Microbiol., 57: 3450–3455.

Du L, Liu F, Zhao P, Zhao T, Doyle MP. 2017. Characterization of Enterococcus durans 152 bacteriocins and their inhibition of Listeria monocytogenes in ham. Food Microbiol., 68: 97– 103. DOI: 10.1016/j.fm.2017.07.002.

EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2017. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 15, 5077. DOI: 10.2903/j.efsa.2017.5077.

Favaro L, Basaglia M, Casella S, Hue I, Dousset X, de Melo Franco BDG, Todorov SD. 2014. Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from homemade white brine cheese. Food Microbiol., 38: 228–239. DOI: 10.1016/j.fm.2013.09.008

Fontana C, Cocconcelli PS, Vignolo G, Saavedra L. 2015. Occurrence of antilisterial structural bacteriocins genes in meat borne lactic acid bacteria. Food Control, 47: 53–59. DOI:10.1016/j.foodcont.2014.06.021.

Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A. 2011. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol., 151: 125–140. DOI: 10.1016/j.ijfoodmicro.2011.08.014.

Hwanhlem N, Ivanova T, Biscola V, Choiset Y, Haertlé T. 2017. Bacteriocin producing Enterococcus faecalis isolated from chicken gastrointestinal tract originating from Phitsanulok, Thailand: Isolation, screening, safety evaluation and probiotic properties. Food Control, 78:187–195. DOI:10.1016 /j.foodcont.2017.02.060.

İspirli H, Demirbaş F, Dertli E. 2017. Characterization of functional properties of Enterococcus spp. isolated from Turkish white cheese. LWT- Food Sci. Technol., 75: 358– 365. DOI: 10.1016/j.lwt.2016.09.010.

Kjems E. 1955. Studies on streptococcal bacteriophages: I. Techniques for isolating phage producing strains. Patholo Microbiol Scand., 36: 433–440.

Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 12: 39–86. DOI: 10.1111/j.1574–6976.1993.tb00012.x.

Krämer J, Brandis, H. 1975. Mode of action of two Streptococcus faecium bacteriocins. Antimicrob Agents Chemother., 7: 117–120.

Melero B, Stessl B, Manso B, Wagner M, Esteban-Carbonero ÓJ, Hernández M, Rovira J, Rodriguez-Lázaro D. 2019. Listeria monocytogenes colonization in a newly established dairy processing facility. Int. J. Food Microbiol., 289: 64–71. DOI:10.1016/j.ijfoodmicro.2018.09.003.

Morandi S, Cremonesi P, Povolo M, Brasca M. 2012. Enterococcus lactis sp. nov., from Italian raw milk cheeses. Inter J Syst Evol Microbiol., 62: 1992–1996 DOI: 10.1099/ijs.0.030825–0.

Moreno MRF, Sarantinopoulos P, Tsakalidou E, De Vuyst L. 2006. The role and application of enterococci in food and health. Int. J. Food Microbiol., 106: 1–24. DOI: 10.1016/ j.ijfoodmicro.2005.06.026.

Neria D, Antocia S, Iannettia L, Ciorbab AB, D'Aurelioa R, Del Mattoa I, Di Leonardoa M, Giovanninia A, Prencipea VA, Pomilioa F, Santarellia GA, Miglioratia G. 2019. EU and US control measures on Listeria monocytogenes and Salmonella spp. in certain ready-to-eat meat products: An equivalence study. Food Control, 96: 98–103. DOI: 10.1016/ j.foodcont.2018.09.001.

NICD, Situation Update on Listeriosis Outbreak, South Africa, 2018, http://www.nicd.ac.za/wp-content/uploads/2018/03 /listeriasitrep–13mar2018_finalapproved.pdf.

Osmanağaoğlu O. 2007. Detection and characterization of Leucocin OZ, a new anti-listerial bacteriocin produced by Leuconostoc carnosum with a broad spectrum of activity. Food Control, 18: 118–123. DOI: 10.1016/j.foodcont.2005.08.015.

Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Escámez PSF, Girones R, Herman L, Koutsoumanis K, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlstrom H, Takkinen J, Wagner M, Arcella D, Da Silva Felicio MT, Georgiadis M, Messens W, Lindqvist R. 2018. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA Journal, 16 (1): 5134. DOI: 10.2903/j.efsa.2018.5134.

Rivas FP, Castro MP, Vallejo M, Marguet E, Campos CA. 2012. Antibacterial potential of Enterococcus faecium strains isolated from ewes’ milk and cheese. LWT- Food Sci Technol., 46: 428–436. DOI: 10.1016/j.lwt.2011.12.005.

Silva VP, Pereira OG, Leandro ES, Da Silva TC, Ribeiro KG, Mantovani HC. 2016. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. J Dairy Sci., 99 (3): 1895–1902. DOI:10.3168/jds.2015– 9792.

Sonsa-Ard N, Rodtong S, Chikindas ML, Yongsawatdigu J. 2015. Characterization of bacteriocin produced by Enterococcus faecium CN25 isolated from traditionally Thai fermented fish roe. Food Control, 54:308–316. DOI: 10.1016 /j.foodcont.2015.02.010.

Şanlıbaba P, Uymaz Tezel B, Çakmak GA. 2018a. Prevalence and Antibiotic Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Foods in Turkey. J of Food Qual., DOI: 10.1155/2018/7693782.

Şanlıbaba P, Uymaz Tezel B, Çakmak GA. 2108b. Detection of Listeria spp. in raw milk and dairy products retailed in Ankara. Gıda, 43 (2): 273, 282. DOI: 10.15237 /gida.GD17107.

Şanlıbaba P, Uymaz Tezel B. 2018c. Prevalence and Characterization of Listeria Species from Raw Milk and Dairy Products from Çanakkale Province. TURJAF, 6 (1): 61–64. DOI: 10.24925/turjaf.v6i1.61–64.1641.

Tagg JR, Mcgiven AR. 1971. Assay Systems for Bacteriocins. Appl Environ Microbiol., 21: 943–947.

Uymaz B, Şimşek Ö, Akkoç N, Ataoğlu H, Akçelik M. 2009. In vitro characterization of probiotic properties of Pediococcus pentosaceus BH105 isolated from human faeces. Ann Microbiol., 59 (3): 485–491.

van Belkum MJ, Hayema BJ, Geis A, Kok J, Venema G. 1989. Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl Environ Microbiol., 55: 1187– 1191.

Yang E, Fan L, Jiang Y., Doucette C, Fillmore S. 2012. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express, 2 (1): 48. DOI:10.1186/2191–0855–2–48.