İncirin Sıcak Hava ve Mikrodalga Destekli Köpük Kurutma Yöntemi ile Kurutulması
Bu çalışmada, köpük kurutma yöntemi kullanılarak incirin sıcak hava (60, 70, 80°C) ve mikrodalga (100, 300, 600 W) ile kurutma işlemi gerçekleştirilmiş, kurutma işlem parametrelerinin ve köpük kalınlığının kurutma kinetiğine etkisi incelenmiştir. Kurutma işlemi yalnızca düşen kurutma periyodunda gerçeklemiş ve sabit kurutma periyodu gözlenmemiştir. Mikrodalga ile kurutma, köpük yüzeylerindeki büyük buharlaşma alanına ek olarak hacimsel ısıtma sağlaması nedeniyle sıcak hava ile kurutmaya kıyasla daha kısa sürede tamamlanmıştır. Sıcaklığın ve mikrodalga gücünün artması kuruma sürelerini kısaltırken, köpük kalınlığının artması ile kuruma süreleri uzamıştır. Kinetik parametreleri belirlemek için, deneysel kurutma verileri Fick’in 2. difüzyon denkleminin yarı deneysel modellerine yerleştirilmiştir. Bunlar arasında, Wang ve Singh modeli mikrodalga kurutma için daha iyi bir uyum sağlarken, Logaritmik model sıcak hava ile kurutma için daha uygun bulunmuştur. Mikrodalga ve sıcak hava kurutma için etkili difüzyon katsayısı değerleri sırasıyla 9,94×10-10 -405,69×10-10 ve 13,26×10-10-26,65×10-10m2 ·s-1 aralığında değişim göstermiştir. Kurutma sıcaklığı, mikrodalga gücü ve köpük kalınlığının artmasıyla etkili difüzyon katsayısı değerleri artmıştır. Kalınlığın artması yapıdaki boşlukların artmasını ve ısı iletiminin konveksiyonla gerçekleşmesini sağlayarak etkili difüzyon yayılımının desteklenmesini sağlamıştır. Aktivasyon enerjisi Arrhenius denklemi kullanılarak mikrodalga kurutma için 2,195-2,379 W·g-1 aralığında, sıcak hava ile kurutma için ise 12,952-21,426 kJ·mol-1 aralığında bulunmuştur.
Drying of Fig with Microwave and Hot Air Assisted Foam-Mat Drying Method
In this study, the drying process of fig foam was carried out with hot air (60, 70, 80°C) and microwave (100, 300, 600 W) and the effect of drying process parameters and foam thickness on drying kinetics was investigated. The drying process was carried out only falling drying rate period and no constant drying rate period was observed. The drying times of the microwave drying were lower than the drying times of hot air drying due to the volumetric heating in addition to the large evaporation area on the foam surfaces. Drying times were shortened by increasing the temperature and microwave power whereas drying time increased with increasing foam thickness. Experimental drying data were placed in semi-empirical models of the 2. Fick's diffusion equation to determine kinetic parameters. Among them, it was found that Wang and Singh and Logarithmic models were better fitted for microwave and hot air drying respectively. The effective diffusion coefficient values for microwave and hot air drying varied between 9.94×10-10 -405.69×10-10,13.26×10-10-26.65×10-10 m2·s-1 , respectively. Effective diffusion coefficient values increased with increasing temperature, microwave power and foam thickness. High thickness supported the diffusion process by convection of heat due to the increase in gaps in the structure. Activation energy which calculated with Arrhenius equation was varied from 2.195-2.379 W·g-1 for microwave drying and 12.952-21.426 kJ·mol-1 for hot air drying.
___
- Akintoye OA, Oguntunde OA. 1991. Preliminary investigation on the effect of foam stabilizers on the physical characteristics and reconstitution properties of foam-mat dried soymilk. Drying Technol., 9(1): 245-262.
- Alakali JS, Kucha EI, Ariahu CC. 2010. Drying characteristics of osmo-foam-mat mango pulp. Journal of Agriculture Biotechnology & Ecology., 3(1): 87-98.
- Azizpour M, Mohebbi M, Haddad Khodaparast MH, Varidi M. 2014. Optimization of foaming parameters and investigating the effects of drying temperature on the foam-mat drying of shrimp (Penaeus indicus). Drying Technol., 32: 374e384.
- Baysal T, İçier F, Ersus S. 2003. Effects of microwave and infrared drying on the quality of carrot and garlic. Eur Food Res Technol, 218 (1): 68-73.
- Branco IG, Kikuchi TT, Sanjinez EJA, Moraes ICF, Haminiuk CWI. 2016. Drying kinetics and quality of uvaia (Hexachlamys edulis (O. Berg)) powder obtained by foammat drying. Int. J. Food Sci. Technol., 51: 1703–1710.
- Crank J. 1975. The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon Press.
- Dev SR, Raghavan VG. 2012. Advancements in drying techniques for food, fiber, and fuel. Drying. Technol. 30: 1147–1159.
- Djaeni M, Prasetyaningrum A, Sasongko SB, Widayat W, Hii CL. 2015. Application of foam-mat drying with egg White for carrageenan: drying rate and product quality aspects. J. Food Sci. Technol., 52: 1170–1175.
- Doymaz I. 2004. Pretreatment effect on sun drying of mulberry fruits (Morus alba L.).
- Eke AB, Onyenekwum PC, Asota CN, Kalu RN. 1995. Effect of solar and traditional open sun on the microbial loads and some nutrients of tomato. 17th annual conference of Nigerian society of Agricultural Engineers, Federal University of Technology, Nigeria.
- Falade KO, Adeyanju KI, Uzo-Peters PI. 2003. Foam-mat drying of cowpea (Vignaunguiculata) using glycerylmonostearate and egg albumin as foaming agents. Eur. Food Res. Technol., 217(6): 486-491
- Farahnaky A, Ansari S, Majzoobi M. 2009. Effect of glycerol on the moisture sorption isotherms of figs. J. Food Eng., 93: 468–473
- Fernandes RVB, Queıroz F, Botrel DA, Rocha VV, Lima CF, Souza VR. 2013. Foam mat drying of tomato pulp. Biosci. J., 29: 816–825.
- Franco TS, Perussello CA, Ellendersen LDSN, Masson ML. 2015. Foam mat drying of yacon juice: experimental analysis and computer simulation, J. Food Eng., 158: 48–57.
- Goyal RK, Kıngsly ARP, Manıkanthan MR, Ilyas SM. 2007. Mathematical modeling of thin layer drying kinetics of plum in a tunnel dryer. J. Food Eng. 79: 176–180.
- Kadam DM, Balasubramanuan S. 2011. Foam mat drying of tomato juice. J. Food Process. Preserv., 35(4): 488-495.
- Kandasamy P, Varadharaju N, Kalemullah S, Maladhı D. 2012. Optimization of process parameters for foam-mat drying of papaya pulp. J. Food Sci. Technol. 51: 2526–2534.
- Kandasamy P, Varadharaju N, Kalemullah S. 2012. Foam mat drying of papaya (Carica Papaya L.) using glycerol monostearate as foaming agent. Food Science and Quality Management, 9: 17–27.
- Karathanos VT, BelessıotısVG. 1999. Application of thin-layer equation to drying data of fresh and semi-dried fruits. J.Agric. Eng. Res., 74: 355–361.
- Karim AA, Wai CC. 1999. Foam-mat drying of starfruit (Averrhoacarambola L.) puree, Stability and air drying characteristics. Food Chem., 64(3): 337-343.
- Kaymak-Ertekin F, Gedik A. 2005. Kinetic modelling of quality deterioration in onions during drying and storage. J. Food. Eng., 68(4): 443-453.
- Khamjae T, Rojanakorn T. 2016. Foam-mat drying of passion fruit aril. Int. Food. Res. J., 25(1): 204-212
- Koc B, Eren I, Ertekin FK. 2008. Modelling bulk density, porosity and shrinkage of quince during drying: The effect of drying method. J. Food. Eng., 85(3): 340-349.
- Krasaekoopt W, Bhatia S. 2012. Production of yoğurt powder using foam-mat drying. Faculty of Biotechnology, Assumption University Bangkok, Thailand, 15(3): 166-171.
- Rajkumar P, Kailappan R, Viswanathan R, Raghavan GSV. 2007. Drying characteristics of foamed alphonso mango pulp in a continuous type foam mat dryer. J. Food. Eng., 79(4): 1452-1459.
- Rajkumar P, Kailappan R, Viswanathan RGSV. 2007. Raghavan, Drying characteristics of foamed alphonso mango pulp in a continuous type foam mat dryer, J. Food. Eng., 79: 1452–1459.
- Rajkumar P, Kailappan R. (006. Optimizing the process parameters for foam mat drying of Totapuri mango pulp. Madras Agric. J., 93: 86–98.
- Rao PP, Nagender A, Rao LJ, Rao DG. 2007. Studies on the effects of microwave drying and cabinet tray drying on the chemical composition of volatile oils of garlic powders. Eur. Food. Res. Technol., 224: 791-795.
- Rao TSS, Murali HS, Rao KRG. 1987. Preparation of foam-mat dried and freeze dried whole egg powder (hen’s). J. Food. Sci. Technol., 24: 23–26.
- Rasouli M, Seiiedlou S, Ghasemzadeh HR, Nalbandi. 2011. Influence of drying conditions on the effective moisture diffusivity and energy of activation during the hot air drying of garlic. 2(4): 96-101.
- Sagar VR, Kumar PS. 2010. Recent advances in drying and dehydration of fruits and vegetables: a review. J. Food. Sci. Technol., 47: 15–26.
- Sangamithra A, Venkatachalam S, John SG, Kuppuswamy K. 2015. Foam mat drying of food materials: a review. J. Food. Process. Preserv., 39: 3165–3174.
- Silva AS, Gurjao KCO, Almeida FCA, Bruno RLA, Pereira WE. 2008. Dehydration of tamarind pulp through the foam-mat drying method. 32: 1899– 1905.
- Sonawane SK, Arya SS. 2015. Effect of drying and storage on bioactive components of jambhul and wood apple. J. Food. Sci. Technol., 52: 2833–2841.
- Thuwapanichayanan R, Prachayawarakorn S, Soponronnarit S. 2008. Drying characteristics and quality of banana foam mat. J. Food Eng. 86: 573–583.
- Trichopoulou A, Vasilopoulou E, Georga K, Soukara S, Dilis V. 2006. Traditional foods: Why and how to sustain them. Trends Food Sci. Tech. 17: 498–504.
- Vernon-Carter EJ, Espinosa-Paredes G, Beristain CI, RomeroTehuitzil H. 2001. Effect of foaming agents on the stability, rheological properties, drying kinetics and flavour retention of tamarind foam-mats. Food. Res. Int. 34: 587–598.
- Wilson RA, Kadam DM, Kaur V, Chadha S, Kaushik P, Kaur S, Patil RT, Rai DR. 2012. Physicochemical and microbial quality evaluation of foam-matdried pineapple powder. Int. J. Food Sci. Technol., 47: 1654–1659.