Farklı Besin Solüsyonlarının Yüzen Su Kültüründe Rokanın Verim ve Kalite Özelliklerine Etkileri

Bengi F1 roka tohumları torf ortamına ekilmiştir. Her bir viyol gözüne (17 cc) 1 tohum gelecek şekilde (957 bitki/m2 ) ekim yapılmıştır. Çimlenme sonrası tohumlar adaptasyon serasına alınmış, çıkışlar tamamlandıktan sonra fideler su kültürüne aktarılmıştır. Bitkilerin beslenmesinde “tam doz” (komple besin solüsyonu: mg/L: N 150, P 50, K 150, Ca 150, Mg 50, Fe 5,0, Mn 0,50, Zn 0,05, B 0,50, Cu 0,03, Mo 0,02), “yarım doz” (makro elementleri %50 azaltılmış) besin solüsyonu ve “su” uygulaması kullanılmıştır. Ardışık 2 dönemde yapılan yetiştiricilikte her dönemde 3’er hasat yapılmış, ilk hasattan alınan yapraklarda kalite analizleri gerçekleştirilmiştir. Sonuçlar iki dönem ortalaması şeklinde sunulmuştur. Elde edilen sonuçlar, bitki gelişimi, verim ve kalite özelliklerinin besin solüsyonu konsantrasyonuna bağlı olarak değiştiğini göstermiştir. Besin solüsyonu konsantrasyonu azaldıkça bitki gelişim ve verim değerlerinin azaldığı; renk ve toplam klorofil miktarlarının değişmediği, nitrat içeriğinin azalırken vitamin C içeriğinin arttığı saptanmıştır. Yaprak N, P, K ve Fe element içerikleri yarım doz uygulaması ile azalmış; Ca ve Mg’da değişiklik olmamıştır. Ancak ölçülen birçok parametrede tam doz ve yarım doz uygulamaları arasında istatistiksel bir farklılığın olmadığı görülmüştür. Su uygulaması bitki gelişimi ve verim için gübreli uygulamalara göre yeterli bulunmamıştır. Araştırma sonucunda, rokanın yüzen su kültüründe yetiştirilebileceği, besin elementleri %50 azaltılmış yarım doz uygulamasının verimde önemli bir azalma meydana getirmeden gerek nitrat içeriğini azaltıp, vitamin C içeriğini arttırması ve gerekse daha az gübre kullanımına olanak vermesi nedeni ile tercih edilebileceği sonucuna varılmıştır.

Effects of Different Nutrient Solutions on Yield and Quality Parameters of Rocket Grown in Floating Water Culture

Seeds of Bengi F1 rocket cultivar were sown into peat as inserting each seed to each hole (17 ccs)of trays with 210 cells (957 plant m-2). Following germination in the germination chamber,seedling trays were moved to a climate controlled greenhouse for adaptation. After emergence,the seedlings were transferred to water culture. The nutrient solution was applied as “full dose”(mg/L: N 150, P 50, K 150, Ca 150, Mg 50, Fe 5.0, Mn 0.50, Zn 0.05, B 0.50, Cu 0.03, Mo 0.02),“half dose” (macro elements reduced by 50%) and “without nutrients” (water). Cultivation wasperformed in 2 consecutive periods and in each period 3 harvests were done and quality analysiswas done on the leaves from the first harvest. Results were given as the mean of two periods.Results showed that plant growth, yield and quality parameters vary depending on theconcentration of the nutrient solution. It was observed that as the concentration of nutrient solutiondecreased, plant growth, biomass, yield values decreased, leaf color and total chlorophyllconcentration did not change and while nitrate content decreased, vitamin C content increased.Leaf N, P, K and Fe element contents decreased with half dose, whereas Ca and Mg content didnot change. However, there was no statistical difference between full dose and half dose treatmentsin many measured parameters. When all the data obtained from the study are evaluated together;it is suggested that rocket can be grown in a floating water culture and the dose of macro elementsas reduced 50% can be preferred because it reduces the nitrate content, increases the vitamin Ccontent and allows the use of less fertilizers without causing any significant reduction in yieldcompared with full dose.

___

  • Alberici A, Quattrini E, Penati M, Martinetti L, Gallina PM, Ferrante A, Schiavi M. 2008. Effect of the reduction of nutrient solution concentration on leafy vegetables quality grown in floating system. Acta Hort, 801: 1167-1175.
  • Antonacci S, Maggiore T, Ferrante A. 2007. Nitrate metabolism in plants under hypoxic and anoxic conditions. Plant Stress, 1: 136-141.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 24(1): 1-15.
  • Barlas NT, İrget ME, Tepecik M. 2011. Mineral content of the rocket plant (Eruca sativa). African J Biotech, 10(64): 14080- 14082.
  • Bilalis D, Kanatas P, Patsiali S, Konstantas A, Akoumianakis K. 2010. Comparison between conventional and organic floating systems for lettuce and tomato (Lactuca sativa and Lycopersicon esculentum) seedling production. J Food Agric Envir, 7(2): 623-628.
  • Branca F. 1994. Rocket Genetic Resources Network. In: Padulosi S. (ed.). Work conducted by the instituto di Orticultura of the University of Catania, Sicily., 13-15 November 1994, Lisbon, Portugal, 7 p.
  • Carrasco G, Martinez AC, Marquez O, Osorio D. 2003. Vegetable seedlings grown in a float system. Acta Hort, 614: 241-245.
  • Carrasco G, Gajardo JM, Álvaro JA, Urrestarazu M. 2011. Rocket production (Eruca sativa mill.) in a floating system using peracetic acid as oxygen source compared with subsrate culture. J Plant Nutr, 34: 1397-1401.
  • Cataldo DA, Haaron M, Schrader LF, Youngs VL. 1975. Rapid colormetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Commun Soil Sci Plant Anal, 6: 71-80.
  • Cocetta G, Quattrini E, Schiavi M, Martinetti L, Spinardi A, Ferrante A. 2007. Nitrate and sucrose content in fresh-cut leaves of spinach plants grown in floating system. Agric Med, 137: 79-85.
  • Conklin PL. 2004. Ascorbic Acid: An essential micronutrient provided by plants. Encyclopedia of Plant and Crop Science. Mercel Dekker. D'Anna F, Miceli A, Vetrano F. 2003. First results of floating system cultivation of Eruca sativa L. Acta Hort, 609: 361-364.
  • Duyar H, Kılıç CC. 2016. A research on production of rocket and parsley in floating system. J Agric Sci, 8(7): 54-60.
  • Eşiyok D, Ongun AR, Bozokalfa MK, Tepecik M, Okur B, Kaygısız T. 2006. Organik roka yetiştiriciliği. VI. Sebze Tarımı Sempozyumu, Kahramanmaraş-Türkiye, 19-22 Eylül 2006, s. 85-89.
  • Eşiyok D. 2012. Kışlık ve Yazlık Sebze Yetiştiriciliği. İzmir: Ege Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü, 404 s.
  • Fallovo C, Rouphael Y, Rea E, Battistelli A, Colla G. 2009. Nutrient solution concentration and growing season effect yield and quality of Lactuca sativa var. acephala in floating raft culture. J Sci Food and Agric, 89: 1682-1689.
  • Fernández JA, Navarro A, Vicente MJ, Peñapareja D, Plana V. 2008. Effect of seed germination methods on seedling emergence and earliness of purslane (Portulaca oleracea L.) cultivars in a hydroponic floating system. Acta Hort, 782: 207-212.
  • Ferrante A, Incrocci L, Maggini R, Tognoni F, Serra G. 2003. Preharvest and postharvest strategies for reducing nitrate content in rocket (Eruca sativa). Acta Hort, 628: 153-159.
  • Fontana E, Tibaldi G, Nicola S. 2010. Effect of the nutrient solution and shelf-life conditions on the essential oil profile of minimally processed dill (Anethum graveolens L.) grown in a soilless culture system. Acta Hort, 877: 135-142.
  • Franco JA, Cros V, Vicente MJ, Martinez-Sanchez JJ. 2011. Effects of salinity on the germination, growth, and nitrate contents of purslane (Portulaca oleracea L.) cultivated under different climatic conditions. J Hort Sci Biotech, 86(1): 1–6.
  • Gonnella M, Serio F, Conversa G, Santamaria P. 2003. Yield and quality of lettuce grown in floating system using different sowing density and plant spatial arrangements. Acta Hort, 614: 687-692.
  • Gonnella M, Serio F, Conversa G, Santamaria P. 2004. Production and nitrate content in Lamb's lettuce grown in floating system. Acta Hort, 644: 61-68.
  • Gül A. 2008. Topraksız Tarım. İstanbul: Hasad Yayıncılık, ISBN:978-975-8377-66-4, 144 s.
  • Günay A. 2005. Sebze Yetiştiriciliği Cilt 1. İzmir: Meta Basımevi, 502 s.
  • Jakse M, Hacın J, Marsıc KN. 2013. Production of rocket (Eruca sativa Mill.) on plug trays and on a floating system in relation to reduced nitrate content. Acta Agric Slovenica, 101 (1): 59- 68.
  • Kacar B, İnal A. 2008. Bitki Analizleri. Ankara, Turkey Nobel Akademik Yayıncılık, 892 p.
  • Kara E. 1993. Sebzelerde nitrat birikimi. Ecology, 7: 10-13.
  • Lenzi A, Baldi A, Tesi R. 2011. Growing spinach in a floating system with different volumes of aerated or nonaerated nutrient solution. Adv Hortic Sci, 25(1): 21-25.
  • Magnani G, Filippi F, Borghesi E. 2008. Impact of sunlight spectrum modification on yield and quality of ready-to-use lettuce and rocket salad grown on floating system. Acta Hort, 801: 163-169.
  • McCance R, Widdowson E. 1991. The Composition of Foods. 5th Ed., London: Royal Society of Chemistry (Great Britain) and Ministry of Agriculture, Fisheries and Food.
  • McGuire RG. 1992. Reporting of objective color measurements,. HortSci, 27(12): 1254-1255.
  • Morgan L. 1999. Hydroponic Lettuce Production. Narrabeen, NSW, Australia: Casper Productions.
  • Munzuroğlu Ö, Karataş F, Gür N. 2000. Işgın (Rheum ribes L.) bitkisindeki A, E ve C vitaminleri ile selenyum düzeylerinin araştırılması. Turkish J Biol, 24: 397-404.
  • Nicola S, Hoeberechts J, Fontana E. 2005. Comparison between traditional and soilless culture systems to produce rocket (Eruca sativa) with low nitrate content. Acta Hort, 697: 549- 555.
  • Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass DMA. 2006. High-affinity nitrate transport in roots of arabidopsis depends on expression of the NAR2-Like gene Atnrt3.1. Plant Physiol, 140: 1036-1046.
  • Özdestan Ö, Üren A. 2010. Gıdalarda nitrat ve nitrit. Akademik Gıda, 8(6): 35-43.
  • Öztekin GB, Uludağ T, Tüzel Y. 2018. Growing spinach (Spinacia oleracea L.) in a floating system with different concentrations of nutrient solution. Appl Ecol Env Res, 16(3): 3333-3350.
  • Pearson D. 1970. The Chemical Analysis of Foods. 6th Ed., New York, USA: Chemical Publishing Co Inc.
  • Rakocy JE, Hargreaves JA, Bailey DS. 1993. Nutrient accumulation in a recirculating aquaculture system integrated with hydroponic vegetable production. American Soc Agr Eng, 148-158.
  • Resh HM. 1998. Hydroponic Food Production. 5th Ed., Santa Barbara, CA: Woodbrigde Press Publishing Company.
  • Rodríguez-Hidalgo S, Artés-Hernández F, Gómez PA, Fernández JA, Artés F. 2010. Quality of fresh-cut baby spinach grown under a floating trays system as affected by nitrogen fertilisation and innovative packaging treatments. J Sci Food Agric, 90: 1089-1097.
  • Santamaria P, Gonnella M, Elia A, Parente A, Serio F. 2001. Ways of reducing rocket salad nitrate content. Acta Hort, 548: 529-536.
  • Taiz L, Zeiger E. 2008. Bitki Fizyolojisi. Ankara, Turkey: Palme Press, 690 p.
  • Tannenbaum SR, Correa P. 1985. Nitrate and gastric cancer risks. Nature, 317: 675-676.
  • Tomasi N, Roberto P, Luisa DC, Cortella G, Terzano R, Mimmo T, Scampicchio M, Cesco S. 2015. New 'solutions' for floating cultivation system of ready-to-eat salad: A review. Trends Food Sci Tech, 46: 267-276.
  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK. 2006. Nitrate transporters and peptide transporters. FEBS Letters, 581: 2290-2300.
  • Tuzel Y, Oztekin GB. 2017. Organic seedling production. Acta Hort, 1170: 1141-1148.
  • Van Der Boon J, Steenhuizen JW, Steingrover EG. 1990. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH4/NO3 ratio and temperature of the recirculating nutrient solution. J Hortic Sci, 65: 309-321.
  • Vernieri P, Borghesi E, Ferrante A, Magnani G. 2005. Application of biostimulants in floating system for improving rocket quality. J Food Agric Env, 3(3-4): 86-88.
  • Zhang X, Yu HJ, Zhang XM, Yang XY, Zhao WC, Li Q, Jiang
  • WJ. 2016. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. Plant Physiol Biochem, 108: 222-230.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)