Heavy Metal Toxicity in Plants: An Overview on Tolerance Mechanisms and Management Strategies

Heavy Metal Toxicity in Plants: An Overview on Tolerance Mechanisms and Management Strategies

Heavy metals are one of the factors that pollute the environment and significantly affect soil fertility, plant physiology, development, and productivity. The tolerance of plants to toxicity depends on the species and tissue, element type, and duration of exposure to stress. Some special signal molecules such as nitric oxide (NO), hydrogen peroxide (H2O2), beneficial ions, hyperaccumulating plants, stress hormones, nanoparticles, organic compounds, and microbial applications can be recommended to alleviate the stress effects caused by toxic heavy metals in plants. Induction of other promising techniques like seed priming, active involvement of plant growth regulator, use of osmoprotectants, successful plant microbes’ crosstalk and recent utilization of nanoparticles are worth using strategies in mitigation of heavy metal stress in plants. These practices effectively regulate the activities of antioxidant enzymes for the alleviation of stress in plants, creditably improving the plant tolerance via preserving cell homeostasis and amending the adversative effects of heavy metal stress in plants. These inventive strategies offer an enriched understanding of how to boost crop productivity under heavy metal stress in order to decrease the risk to global food security.

___

  • Abdel Latef AAH, Zaid A, Abo-Baker ABAE, Salem W, Abu Alhmad MF. 2020. Mitigation of copper stress in maize by inoculation with Paenibacillus polymyxa and Bacillus circulans. Plants, 9(11): 1513.
  • Adejumo SA, Adeosun AA, Olaniyan AB, Awodoyin RO. 2015. Seasonal variations in distribution, heavy metal uptake and proline production of native plants growing on Pb contaminated site in Ibadan South-Western, Nigeria. Nigerian Journal of Ecology, 14: 37-47.
  • Adrees M, Khan ZS, Hafeez M, Rizwan M, Hussain K, Asrar M, Nasser Alyemeni M, Wijaya L, Ali S. 2021. Foliar exposure of zinc oxide nanoparticles im-proved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicology and Environ-mental Safety, 208: 111627.
  • Aftab T, Hakeem KR. (Eds.). 2021. Plant Growth Regulators: Signalling Under Stress Conditions. Springer Nature.
  • Afzal I, Basra SMA, Cheema MA. 2013. Seed priming: A shotgun approach for alleviation of salt stress in wheat. Int. J. Agric. Biol., 15: 1199-1203
  • Ahmad F, Singh A, Kamal A. 2020. Osmoprotective Role of Sugar in Mitigating Abiotic Stress in Plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress, Wiley: Hoboken, NJ, USA, pp. 53-70.
  • Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alamri SA. 2017. Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science, 63(13): 1889-1899.
  • Ahmed T, Noman M, Manzoor N, Shahid M, Hussaini KM, Rizwan M, Ali S, Maqsood A, Li B. 2021. Green magnesium oxide nanoparticles-based modulation of cellular oxidative repair mechanisms to reduce arsenic uptake and translocation in rice (Oryza sativa L.) plants. Environmental Pollution, 288: 117785.
  • Aihemaiti A, Jiang J, Li DA, Liu N, Yang M, Meng Y, Zou Q. 2018. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area. J Environ Manag, 222: 216-226.
  • Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain ZA, Elsayed E, El Enshasy HA. 2021. Role of Bacillus cereus in improving the Growth and Phytoextractability of Brassica nigra (L.) K. Koch in Chromium Contaminated Soil. Molecules, 26(6): 1569
  • Aldoobie NF, Beltagi MS. 2013. Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. Afr. J. Biotechnol., 12: 4614-4622
  • Ali S, Abbas Z, Seleiman MF, Rizwan M, Yavaş İ, Alhammad BA, Shami A, Hsanuzzaman M, Kalderis D. 2020. Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants, 9(7): 896.
  • Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, Abd Allah EF, Alqarawi AA, Ahmad P. 2019. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 26(11): 11288-11299.
  • Alsaleh A, Astaraei AR, Emami H, Lakzian A. 2020. Impact of Pseudomonas putida Inoculation on Alleviating Mercury Stress in Turnip Planted on a Saline Soil. Malaysian Journal of Soil Science, 24: 72.
  • Andrews GK, Geiser J. 1999. Expression of the Mouse Metallothionein-I and -II Genes Provides a Reproductive Advantage during Maternal Dietary Zinc Deficiency. Journal of Nutrition, 129(9): 1643.
  • Armendariz AL, Talano MA, Nicotra MFO, Escudero L, Breser ML, Porporatto C, Agostini E. 2019. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiology and Biochemistry, 138: 26- 35.
  • Asgher M, Khan MIR, Anjum NA, Khan NA. 2015. Minimising toxicity of cadmium in plants role of plant growth regulators. Protoplasma, 252(2): 399-413.
  • Asgher M, Per TS, Anjum S, Khan MIR, Masood A, Verma S, Khan NA. 2017. Contribution of glutathione in heavy metal stress tolerance in plants, in Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, eds M.I.R. Khan and N.A. Khan (Singapore: Springer Nature Singapore Pte. Ltd.). pp. 297-313.
  • Azeez L, Adejumo AL, Lateef A, Adebisi SA, Adetoro RO, Adewuyi SO, Tijani KO, Olaoye S. 2019. Zero-valent silver nanoparticles attenuate Cd and Pb toxicities on Moringa oleifera via immobilization and induction of phytochemicals. Plant physiology and Biochemistry, 139: 283-292.
  • Aziz L, Hamayun M, Rauf M, Iqbal, A, Arif M, Husssin A, Khan SA. 2021. Endophytic Aspergillus niger reprograms the physicochemical traits of tomato under cadmium and chromium stress. Environmental and Experimental Botany, 186: 104456.
  • Bais H, Weir T, Perry L, Gilroy S, Vivanco J. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. The Annual Review of Plant Biology, 57: 233-66.
  • Basit F, Chen M, Ahmed T, Shahid M, Noman M, Liu J, An J, Hashem A, Al-Arjani ABF, Alqarawi AA, Alsayed MFS, Hu J, Guan Y. 2021. Seed Priming with Brassinosteroids Alleviates Chromium Stress in Rice Cultivars via Improving ROS Metabolism and Antioxidant Defense Response at Biochemical and Molecular Levels. Antioxidants, 10(7):1089
  • Bhardwaj S, Kapoor D. 2019. Role of Plant Growth Regulators in Abiotic Stress Tol-erance. International Journal of Emerging Technologies and Innovative Research (www. jetir. org), ISSN, 2349-5162.
  • Bidi H, Fallah H, Niknejad Y, Tari DB. 2021. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiology and Biochemistry, 163: 348-357.
  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB. 2015. Unrealized potential of seed biopriming for versatile agriculture. In: Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206.
  • Bortolin GS, Teixeira SB, de Mesquita Pinheiro R, Ávila GE, Carlos FS, Da Silva Pedroso CE, Deuner S. 2020. Seed priming with salicylic acid minimizes oxidative effects of aluminum on Trifolium seedlings. Journal of Soil Science and Plant Nutrition, 20(4): 2502-2511.
  • Brito C, Dinis LT, Moutinho-Pereira J, Correia CM. 2019. Drought stress effects and olive tree acclimation under a changing climate. Plants, 8: 232.
  • Cantamessa S, Massa N, Gamalero E, Berta G. 2020. Phytoremediation of a Highly Arsenic Polluted Site, Using Pteris vittata L. and Arbuscular Mycorrhizal Fungi. Plants, 9(9): 1211.
  • Chang S, Shu H. 2015. The Inhibition Analysis of Two Heavy Metal ATPase Genes (NtHMA3a and NtHMA3b) in Nicotiana tabacum. Bioremediation Journal, 19(2): 113-123.
  • Chen H, Li Y, Ma X, Guo L, He Y, Ren Z, Kuang Z, Zhang X, Zhang Z. 2019. Analysis of potential strategies for cadmium stress tolerance revealed by transcriptome analysis of upland cotton. Sci. Rep., 9.
  • Chen H, Yang R, Zhang X, Chen Y, Xia Y, Xu X. 2021. Foliar application of gibberellin inhibits the cadmium uptake and xylem transport in lettuce (Lactuca sativa L.). Scientia Horticulturae, 288: 110410.
  • Chiboub M, Jebara SH, Abid G, Jebara M. 2020. Co-inoculation effects of Rhizobium sullae and Pseudomonas sp. on growth, antioxidant status, and expression pattern of genes associated with heavy metal tolerance and accumulation of cadmium in Sulla coronaria. Journal of Plant Growth Regulation, 39(1): 216-228.
  • Choi YE, Harada E. 2005. Roles of calcium and cadmium on Cd- containing intra-and extracellular formation of Ca crystals in tobacco. Journal of Plant Biology, 48(1): 113-119.
  • Dawuda MM, Liao W, Hu L, Yu J, Xie J, Calderón-Urrea A, Wu Y, Tang Z. 2020. Foliar application of abscisic acid mitigates cadmium stress and increases food safety of cadmium- sensitive lettuce (Lactuca sativa L.) genotype. Peer J, 8: e9270
  • De Siqueira KA, Senabio JA, Pietro-Souza W, de Oliveira Mendes TA, Soares MA. 2021. Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L. Archives of Microbiology, 1-17.
  • Demidchik V. 2015. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot, 109: 212-228
  • Ding S, Ma CF, Shi WG, Liu WZ, Lu Y, Liu QF, Luo ZB. 2017. Exogenous glutathione enhances cadmium accumulation and alleviates its toxicity in Populus × canescens. Tree Physiology, 37: 1697- 1712
  • El Dakak RA, Hassan IA. 2020. The alleviative effects of salicylic acid on physiological indices and defense mechanisms of maize (Zea Mays L. Giza 2) stressed with cadmium. Environmental Processes, 7(3): 873-884.
  • El-Mahdy OM, Mohamed HI, Mogazy AM. 2021. Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd-and Pb-contaminated soil and their physiological effects on Vicia faba L. Environmental Science and Pollution Research, 1-24.
  • Emamverdian A, Ding Y, Mokhberdoran F, Ahmad Z, Xie Y. 2021. The Effect of Silicon Nanoparticles on the Seed Germination and Seedling Growth of Moso Bamboo (Phyllostachys edulis) under Cadmium Stress. Polish Journal of Environmental Studies, 30(4).
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci World J, 1-18.
  • Espanany A, Fallah S, Tadayyon A. 2016. Seed priming improves seed germination and reduces oxidative stress in black cumin (Nigella sativa) in presence of cadmium. Industrial Crops and Products, 79: 195-204.
  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ. 1992. Expression of the pea metallothionein- like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Molecular Biology, 20(6):1019-1028.
  • Faiz S, Yasin NA, Khan WU, Shah AA, Akram W, Ahmad A, Naveed NH, Riaz L. 2021. Role of magnesium oxide nanoparticles in the mitigation of lead-induced stress in Daucus carota: modulation in polyamines and antioxidant enzymes. International Journal of Phytoremediation, 1-9.
  • Faizan M, Bhat JA, Noureldeen A, Ahmad P, Yu F. 2021. Zinc oxide nanoparticles and 24-epibrassinolide alleviates Cu toxicity in tomato by regulating ROS scavenging, stomatal movement and photosynthesis. Ecotoxicology and Environmental Safety, 218: 112293.
  • Fan T, Liu R, Pan D, Liu Y, Ye W, Lu H, Kianpoor Kalkhajeh Y. 2021. Accumulation and subcellular distribution of cadmium in rygegrass induced by Aspergillus niger TL-F2 and Aspergillus flavus TL-F3. International Journal of Phytoremediation, 1-8.
  • Fariduddin Q, Khan TA, Yusuf M, Aafaqee ST, Khalil RRAE. 2018. Amelio-rative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica, pp 1-13.
  • Fatima F, Hashim A, Anees S. 2021. Efficacy of nanoparticles as nanofertilizer production: a review. Environmental Science and Pollution Research, 28(2): 1292-1303.
  • Fu H, Yu H, Li T, Zhang X. 2017. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicology and Environmental Safety, 150: 168
  • Gandhi N. 2021. Facile and Eco-Friendly Method for Synthesis of Calcium Oxide (CaO) Nanoparticles and its Potential Application in Agriculture. Haya Saudi J Life Sci, 6(5): 89-103.
  • García-López JI, Zavala-García F, Olivares-Sáenz E, Lira- Saldívar RH, Díaz Barriga-Castro E, Ruiz-Torres NA, Niño- Medina G. 2018. Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy, 8(10): 215.
  • Gillani SR, Murtaza G, Mehmood A. 2021. Mitigation of Lead Stress in Triticum aestivum L. Seedlings by Treating with Salicylic Acid. Pak. J. Bot, 53(1): 39-44.
  • Gilliam FS, Billmyer JH, Walter CA, Peterjohn WT. 2016. Effects of excess ni-trogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species. Atmospheric Environment, 146: 261-270.
  • Glick B. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv, 28(3): 367e374.
  • Gomi K. 2021. Jasmonic Acid Pathway in Plants. Int J Mol Sci, 22(7): 3506.
  • Gong Q, Li ZH, Wang L, Zhou JY, Kang Q, Niu DD. 2021. Gibberellic acid application on biomass, oxidative stress response, and photosynthesis in spinach (Spinacia oleracea L.) seedlings under copper stress. Environmental Science and Pollution Research, 1-11.
  • Gong ZJ, Zhou WW, Yu HZ, Mao CG, Zhang CX, Cheng JA, Zhu ZR. 2009. Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Insect Molecular Biology, 18(3): 405-417.
  • Grill E, Zenk MH. 1985. Phytochelatins: The Principal Heavy- Metal Complexing Peptides of Higher Plants. Science, 230(4726): 674-6.
  • Guangqiu Q, Chongling Y, Haoliang L. 2007. Influence of heave metals on the carbohydrate and phenolics in mangrove Aegiceras corniculatum L. seedlings. Bull Environ Contam Toxicol., 78: 440-444
  • Gube M. 2016. Fungal molecular response to heavy metal stress. In Biochemistry and Molecular Biology, ed. D. Hoffmeister (Cham: Springer International Publishing). 47-68.
  • Gul F, Arfan M, Shahbaz M, Basra S. 2020. Salicylic acid seed priming modulates morphology, nutrient relations and photosynthetic attributes of wheat grown under cad-mium stress. Int. J. Agric. Biol, 23: 197-204.
  • Gupta DK, Vandenhove H, Inouhe M. 2013a. Role of Phytochelatins in Heavy Metal Stress and Detoxification Mechanisms in Plants. In: Gupta D., Corpas F., Palma J. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38469-1_4
  • Hakla HR, Sharma S, Urfan M, Yadav NS, Rajput P, Kotwal D, Abdel Latef AAH, Pal S. 2021. Gibberellins Target Shoot- Root Growth, Morpho-Physiological and Molecular Pathways to Induce Cadmium Tolerance in Vigna radiata L. Agronomy, 11(5): 896.
  • Hao L, Zhang Z, Hao B, Diao F, Zhang J, Bao Z, Guo W. 2021. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicology and Environmental Safety, 212: 111996.
  • Hasanuzzaman M, Matin MA, Fardus J, Hasanuzzaman M, Hossain MS, Parvin K. 2019. Foliar application of salicylic acid improves growth and yield attributes by up-regulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobotanica, 72(2).
  • Hassan TU, Bano A, Naz I. 2017. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int. J. Phytoremediation, 19: 522-529.
  • Hassan Z, Aarts MGM. 2011. Opportunities and feasibilities for biotechnological improve-ment of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72: 53-63
  • Hediji H, Kharbech O, Massoud MB, Boukari N, Debez A, Chaibi W, Chaoui A, Djebali W. 2021. Salicylic acid mitigates cadmium toxicity in bean (Phaseolus vulgaris L.) seedlings by modulating cellular redox status. Environmental and Experimental Botany, 186: 104432.
  • Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LSP. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance insights from ROS detoxification and scavenging. Front Plant Sci., 6: 420
  • Hussain A, Ali S, Rizwan M, ur Rehman MZ, Javed MR, Imran M, Chatha SAS, Nazir R. 2018. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution, 242: 1518-1526.
  • Hussain A, Ali S, Rizwan M, ur Rehman MZ, Qayyum MF, Wang H, Rinklebe J. 2019. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicology and environmental safety, 173: 156-164.
  • Hussain M, Farooq M, Nawaz A, Al-Sadi AM, Solaiman ZM, Alghamdi SS, Siddique KH. 2017. Biochar for crop production: potential benefits and risks. J Soils Sediment, 17(3): 685-716.
  • Ikram M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, Hamayun M. 2018. IAA producing fungal endophyte Penicillium roqueforti Thom. enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS One, 13(11): e0208150.
  • Irshad MA, ur Rehman MZ, Anwar-ul-Haq M, Rizwan M, Nawaz R, Shakoor MB, Wijaya L, Alyemeni MN, Parvaiz A, Ali S. 2021. Effect of green and chem-ically synthesized titanium dioxide nanoparticles on cadmium accumulation in wheat grains and potential dietary health risk: A field investigation. Journal of Hazardous Materials. 415: 125585.
  • Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S. 2020. Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Notulae Botanicae Horti Agro-botanici Cluj-Napoca, 48(3): 1260-1275.
  • Jain P, Pandey B, Singh P, Singh R, Singh SP, Sonkar S, Gupta R, Rathore SS, Singh AK. 2021. Plant Performance and Defensive Role of Glycine Betaine under En-vironmental Stress. In Plant Performance under Environmental Stress, pp. 225-248. Springer, Cham.
  • Jia H, Wang X, Wei T, Wang M, Liu X, Hua L, Ren XH, Guo JK, Li J. 2021. Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicology and Environmental Safety, 207: 111550
  • Jinal HN, Gopi K, Kumar K, Amaresan N. 2021. Effect of zinc- resistant Lysini-bacillus species inoculation on growth, physiological properties, and zinc uptake in maize (Zea mays L.). Environmental Science and Pollution Research, 28(6): 6540-6548.
  • Kah M, Tufenkji N, White JC. 2019. Nano-enabled strategies to enhance crop nu-trition and protection. Nat. Nanotechnol, 14: 532-540.
  • Kale SK, Parishwad GV, Hussainy ASN, Patil AS. 2021. Emerging Agriculture Applications of Silver Nanoparticles. ES Food and Agroforestry, 3: 17-22.
  • Kamran M, Wang D, Alhaithloul HAS, Alghanem SM, Aftab T, Xie K, Lu Y, Shi C, Sun J, Gu W, Xu P, Soliman MH. 2021. Jasmonic acid-mediated enhanced regulation of oxidative, glyoxalase defense system and reduced chromium uptake contributes to alleviation of chromium (VI) toxicity in choysum (Brassica parachinensis L.). Ecotox. Environ. Saf, 208: 111758
  • Karimi N, Ghasempour HR. 2019. Salicylic acid and jasmonic acid restrains nickel toxicity by ameliorating antioxidant defense system in shoots of metallicolous and non- metallicolous Alyssum inflatum Náyr. populations. Plant Physiol. Biochem, 135: 450-459.
  • Khan S, Akhtar N, Rehman SU, Shujah S, Rha ES, Jamil M. 2021. Biosynthesized Iron Oxide Nanoparticles (Fe3O4 NPs) Mitigate Arsenic Toxicity in Rice Seedlings. Toxics, 9(1): 2.
  • Khanna K, Kohli SK, Bali S, Kaur P, Saini P, Bakshi P, Bhardwaj R. 2018. Role of Microorganisms in Modulating Antioxidant Defense in Plants Exposed to Metal Toxicity. In Plants under Metal and Metalloid Stress. 303-335. Springer, Singapore.
  • Konotop Y, Kovalenko M, Matušíková I, Batsmanova L, Taran N. 2017. Proline application triggers temporal redox imbalance, but alleviates cadmium stress in wheat seedlings. Pak. J. Bot., 49(6): 2145-2151.
  • Koo B, Chang AC, Crowley DE, Page AL. 2006.
  • Characterization of organic acids recovered from rhizosphere of corn grown on biosolids treated medium. Communications in Soil Science and Plant Analysis, 37: 871–887.
  • Kumar V, Singh J, Kumar P. 2019. Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects. Contam Agric Environ Health Risks Remed., 1: 38
  • Kumar A, Voropaeva O, Maleva M, Panikovskaya K, Borisova G, Rajkumar M, Bruno LB. 2021. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere, 266: 128983.
  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J. 2016. Brassinosteroid ameliorates zinc oxide nanoparticles- induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Frontiers in Plant Science, 7: 615.
  • Li Q, Wang G, Wang Y, Yang D, Guan C, Ji J. 2019. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicology and environmental safety, 172: 317-325.
  • Li X, Lan X, Feng X, Luan X, Cao X, Cui Z. 2021. Biosorption capacity of Mucor circinelloides bioaugmented with Solanum nigrum L. for the cleanup of lead, cadmium and arsenic. Ecotoxicology and Environmental Safety, 212: 112014.
  • Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W. 2020. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd- induced phytotoxicity in maize (Zea mays L.). Chemosphere, 239: 124794.
  • Lin J, Sun M, Su B, Owens G, Chen Z. 2019. Immobilization of cadmium in polluted soils by phytogenic iron oxide nanoparticles. Science of the Total Environment, 659: 491-498.
  • Liu H, Timko MP. 2021. Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences, 22(6): 2914.
  • Luo S, Calderón-Urrea A, Yu J, Liao W, Xie J, Lv J, Feng Z, Tang Z. 2020. The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant Soil, 449: 1-10
  • Ma Y, Rajkumar M, Zhang C, Freitas H. 2016b. Beneficial role of bacterial endo-phytes in heavy metal phytoremediation. J. Environ. Manag, 174: 14e25.
  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of the Total Environment, 769: 145221.
  • Mishra S, Mishra A, Küpper H. 2017. Protein biochemistry and expression of cadmium/zinc pumping ATPases in the hyperacumulator plants Arabidopsis halleri and Noccaea caerulescens. Front. Plant. Sci, 7, 8: 835.
  • Moatamed ER, Hussein AA, El-Desoky MM, Khayat ZE. 2019. Comparative study of zinc oxide nanoparticles and its bulk form on liver function of Wistar rat. Toxicol. Ind. Health, 35 (10): 627-637.
  • Moens M, Branco R, Morais PV. 2020. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels. World Journal of Microbiology and Biotechnology, 36(2): 1-11.
  • Moulick D, Santra SC, Ghosh D. 2018. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicology and environmental safety, 152: 67-77.
  • Muhammad Z, Inayat N, Majeed A. 2020. Application of nanoparticles in agriculture as fertilizers and pesticides: challenges and opportunities. In: New Frontiers in Stress Management for Durable Agriculture, pp. 281-293. Springer, Singapore.
  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv, 32(2): 429-448
  • Nazir F, Hussain A, Fariduddin Q. 2019a. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, 230: 544-558.
  • Nazir F, Hussain A, Fariduddin Q. 2019b. Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environmental and Experimental Botany, 162: 479-495.
  • Nemat H, Shah AA, Akram W, Ramzan M, Yasin NA. 2020. Ameliorative effect of co-application of Bradyrhizobium japonicum EI09 and Se to mitigate chromium stress in Capsicum annum L. International Journal of Phytoremediation, 22(13): 1396-1407.
  • Neysanian M, Iranbakhsh A, Ahmadvand R, Oraghi Ardebili Z, Ebadi M. 2020. Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metab-olism, and gene expression in tomato, potential benefits and risk assessment. PloS One, 15(12): e0244207.
  • Noman M, Shahid M, Ahmed T, Tahir M, Naqqash T, Muhammad S, Song F, Abid HMA, Aslam Z. 2020. Green Copper Nanoparticles drom A Native Klebsiella pneumoniae Strain Alleviated Oxidative Stress Impairment of Wheat Plants by Reducing the Chromium Bioavailability and Increasing the Growth. Ecotoxicol. Environ. Saf, 192: 110303.
  • Nouairi I, Jalali K, Zribi F, Barhoumi F, Zribi K, Mhadhbi H. 2019. Seed priming with calcium chloride improves the photosynthesis performance of faba bean plants subjected to cadmium stress. Photosynthetica, 57(2): 438-445.
  • Nouri M, Haddioui A. 2021. Improving seed germination and seedling growth of Lepidium sativum with different priming methods under arsenic stress. Acta Ecologica Sinica, 41(1): 64-71.
  • Ong GH, Ho XH, Shamkeeva S, Fernando MS, Shimen A, Wong LS. 2017. Biosorption study of potential fungi for copper remediation from Peninsular Malaysia. Remediat. J, 27: 59- 63
  • Pál M, Szalai G, Janda T. 2015. Speculation: polyamines are important in abiotic stress signalling. Plant Sci, 237: 16-23.
  • Pan W, You Y, Shentu JL, Weng YN, Wang ST, Xu QR, Liu HJ, Du ST. 2020. Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. Journal of hazardous materials, 391: 122189.
  • Pereira AS, Bortolin GS, Dorneles AOS, Meneghello GE, do Amarante L, Mauch CR. 2021. Silicon seed priming attenuates cadmium toxicity in lettuce seedlings. Environmental Science and Pollution Research, 28(17): 21101-21109.
  • Pires C, Franco AR, Pereira SIA, Henriques I, Correia A, Magan N, Castro PML. 2017. Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiol. J. 1-9.
  • Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC. 2021. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere, 274: 129819.
  • Rademacher W. 2015. Plant growth regulators: backgrounds and uses in plant production. Journal of plant growth regulation, 34(4): 845-872.
  • Rafique M, Ortas I, Rizwan M, Sultan T, Chaudhary HJ, Işik M, Aydin O. 2019. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environmental Science and Pollution Research, 26(20): 20689-20700.
  • Ragab G, Saad-Allah K. 2020. Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. Journal of Plant Growth Regulation, 1-9.
  • Rai-Kalal P, Jajoo A. 2021. Priming with zinc oxide nanoparticles improves germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160: 341-351.
  • Ranjan A, Rajput VD, Minkina T, Bauer T, Chauhan A, Jindal T. 2021. Nano-particles Induced Stress and Toxicity in Plants. Environmental Nanotechnology, Monitoring and Management, 100457.
  • Rasheed R, Ashraf MA, Hussain I, Haider MZ, Kanwal U, Iqbal M. 2014. Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Brazilian Journal of Botany, 37(4): 399-406.
  • Raza Altaf A, Teng H, Saleem M, Raza Ahmad H, Adil M, Shahzad K. 2021. Associative interplay of Pseudomonas gessardii BLP141 and pressmud ameliorated growth, physiology, yield, and Pb-toxicity in sunflower. Bioremediation Journal, 25(2): 178-188.
  • Rehmanullah ZM, Inayat N, Majeed A. 2020. Application of Nanoparticles in Agriculture as Fertilizers. New Frontiers in Stress Management for Durable Agriculture, 281.
  • Rhaman MS, Rauf F, Tania SS, Khatun M. 2020. Seed priming methods: application in field crops and future perspectives. Asian Journal of Research in Crop Science, 8-19.
  • Lin J, Sun M, Su B, Owens G, Chen Z. 2019. Immobilization of cadmium in polluted soils by phytogenic iron oxide nanoparticles. Science of the Total Environment, 659: 491-498.
  • Liu H, Timko MP. 2021. Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences, 22(6): 2914.
  • Luo S, Calderón-Urrea A, Yu J, Liao W, Xie J, Lv J, Feng Z, Tang Z. 2020. The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant Soil, 449: 1-10
  • Ma Y, Rajkumar M, Zhang C, Freitas H. 2016b. Beneficial role of bacterial endo-phytes in heavy metal phytoremediation. J. Environ. Manag, 174: 14e25.
  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of the Total Environment, 769: 145221.
  • Mishra S, Mishra A, Küpper H. 2017. Protein biochemistry and expression of cadmium/zinc pumping ATPases in the hyperacumulator plants Arabidopsis halleri and Noccaea caerulescens. Front. Plant. Sci, 7, 8: 835.
  • Moatamed ER, Hussein AA, El-Desoky MM, Khayat ZE. 2019. Comparative study of zinc oxide nanoparticles and its bulk form on liver function of Wistar rat. Toxicol. Ind. Health, 35 (10): 627-637.
  • Moens M, Branco R, Morais PV. 2020. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels. World Journal of Microbiology and Biotechnology, 36(2): 1-11.
  • Moulick D, Santra SC, Ghosh D. 2018. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicology and environmental safety, 152: 67-77.
  • Muhammad Z, Inayat N, Majeed A. 2020. Application of nanoparticles in agriculture as fertilizers and pesticides: challenges and opportunities. In: New Frontiers in Stress Management for Durable Agriculture, pp. 281-293. Springer, Singapore.
  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv, 32(2): 429-448
  • Nazir F, Hussain A, Fariduddin Q. 2019a. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, 230: 544-558.
  • Nazir F, Hussain A, Fariduddin Q. 2019b. Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environmental and Experimental Botany, 162: 479-495.
  • Nemat H, Shah AA, Akram W, Ramzan M, Yasin NA. 2020. Ameliorative effect of co-application of Bradyrhizobium japonicum EI09 and Se to mitigate chromium stress in Capsicum annum L. International Journal of Phytoremediation, 22(13): 1396-1407.
  • Neysanian M, Iranbakhsh A, Ahmadvand R, Oraghi Ardebili Z, Ebadi M. 2020. Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metab-olism, and gene expression in tomato, potential benefits and risk assessment. PloS One, 15(12): e0244207.
  • Noman M, Shahid M, Ahmed T, Tahir M, Naqqash T, Muhammad S, Song F, Abid HMA, Aslam Z. 2020. Green Copper Nanoparticles drom A Native Klebsiella pneumoniae Strain Alleviated Oxidative Stress Impairment of Wheat Plants by Reducing the Chromium Bioavailability and Increasing the Growth. Ecotoxicol. Environ. Saf, 192: 110303.
  • Nouairi I, Jalali K, Zribi F, Barhoumi F, Zribi K, Mhadhbi H. 2019. Seed priming with calcium chloride improves the photosynthesis performance of faba bean plants subjected to cadmium stress. Photosynthetica, 57(2): 438-445.
  • Nouri M, Haddioui A. 2021. Improving seed germination and seedling growth of Lepidium sativum with different priming methods under arsenic stress. Acta Ecologica Sinica, 41(1): 64-71.
  • Ong GH, Ho XH, Shamkeeva S, Fernando MS, Shimen A, Wong LS. 2017. Biosorption study of potential fungi for copper remediation from Peninsular Malaysia. Remediat. J, 27: 59- 63
  • Pál M, Szalai G, Janda T. 2015. Speculation: polyamines are important in abiotic stress signalling. Plant Sci, 237: 16-23.
  • Pan W, You Y, Shentu JL, Weng YN, Wang ST, Xu QR, Liu HJ, Du ST. 2020. Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. Journal of hazardous materials, 391: 122189.
  • Pereira AS, Bortolin GS, Dorneles AOS, Meneghello GE, do Amarante L, Mauch CR. 2021. Silicon seed priming attenuates cadmium toxicity in lettuce seedlings. Environmental Science and Pollution Research, 28(17): 21101-21109.
  • Pires C, Franco AR, Pereira SIA, Henriques I, Correia A, Magan N, Castro PML. 2017. Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiol. J. 1-9.
  • Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC. 2021. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere, 274: 129819.
  • Rademacher W. 2015. Plant growth regulators: backgrounds and uses in plant production. Journal of plant growth regulation, 34(4): 845-872.
  • Rafique M, Ortas I, Rizwan M, Sultan T, Chaudhary HJ, Işik M, Aydin O. 2019. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environmental Science and Pollution Research, 26(20): 20689-20700.
  • Ragab G, Saad-Allah K. 2020. Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. Journal of Plant Growth Regulation, 1-9.
  • Rai-Kalal P, Jajoo A. 2021. Priming with zinc oxide nanoparticles improves germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160: 341-351.
  • Ranjan A, Rajput VD, Minkina T, Bauer T, Chauhan A, Jindal T. 2021. Nano-particles Induced Stress and Toxicity in Plants. Environmental Nanotechnology, Monitoring and Management, 100457.
  • Rasheed R, Ashraf MA, Hussain I, Haider MZ, Kanwal U, Iqbal M. 2014. Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Brazilian Journal of Botany, 37(4): 399-406.
  • Raza Altaf A, Teng H, Saleem M, Raza Ahmad H, Adil M, Shahzad K. 2021. Associative interplay of Pseudomonas gessardii BLP141 and pressmud ameliorated growth, physiology, yield, and Pb-toxicity in sunflower. Bioremediation Journal, 25(2): 178-188.
  • Rehmanullah ZM, Inayat N, Majeed A. 2020. Application of Nanoparticles in Agriculture as Fertilizers. New Frontiers in Stress Management for Durable Agriculture, 281.
  • Rhaman MS, Rauf F, Tania SS, Khatun M. 2020. Seed priming methods: application in field crops and future perspectives. Asian Journal of Research in Crop Science, 8-19.
  • Lin J, Sun M, Su B, Owens G, Chen Z. 2019. Immobilization of cadmium in polluted soils by phytogenic iron oxide nanoparticles. Science of the Total Environment, 659: 491-498.
  • Liu H, Timko MP. 2021. Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences, 22(6): 2914.
  • Luo S, Calderón-Urrea A, Yu J, Liao W, Xie J, Lv J, Feng Z, Tang Z. 2020. The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant Soil, 449: 1-10
  • Ma Y, Rajkumar M, Zhang C, Freitas H. 2016b. Beneficial role of bacterial endo-phytes in heavy metal phytoremediation. J. Environ. Manag, 174: 14e25.
  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of the Total Environment, 769: 145221.
  • Mishra S, Mishra A, Küpper H. 2017. Protein biochemistry and expression of cadmium/zinc pumping ATPases in the hyperacumulator plants Arabidopsis halleri and Noccaea caerulescens. Front. Plant. Sci, 7, 8: 835.
  • Moatamed ER, Hussein AA, El-Desoky MM, Khayat ZE. 2019. Comparative study of zinc oxide nanoparticles and its bulk form on liver function of Wistar rat. Toxicol. Ind. Health, 35 (10): 627-637.
  • Moens M, Branco R, Morais PV. 2020. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels. World Journal of Microbiology and Biotechnology, 36(2): 1-11.
  • Moulick D, Santra SC, Ghosh D. 2018. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicology and environmental safety, 152: 67-77.
  • Muhammad Z, Inayat N, Majeed A. 2020. Application of nanoparticles in agriculture as fertilizers and pesticides: challenges and opportunities. In: New Frontiers in Stress Management for Durable Agriculture, pp. 281-293. Springer, Singapore.
  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv, 32(2): 429-448
  • Nazir F, Hussain A, Fariduddin Q. 2019a. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, 230: 544-558.
  • Nazir F, Hussain A, Fariduddin Q. 2019b. Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environmental and Experimental Botany, 162: 479-495.
  • Nemat H, Shah AA, Akram W, Ramzan M, Yasin NA. 2020. Ameliorative effect of co-application of Bradyrhizobium japonicum EI09 and Se to mitigate chromium stress in Capsicum annum L. International Journal of Phytoremediation, 22(13): 1396-1407.
  • Neysanian M, Iranbakhsh A, Ahmadvand R, Oraghi Ardebili Z, Ebadi M. 2020. Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metab-olism, and gene expression in tomato, potential benefits and risk assessment. PloS One, 15(12): e0244207.
  • Noman M, Shahid M, Ahmed T, Tahir M, Naqqash T, Muhammad S, Song F, Abid HMA, Aslam Z. 2020. Green Copper Nanoparticles drom A Native Klebsiella pneumoniae Strain Alleviated Oxidative Stress Impairment of Wheat Plants by Reducing the Chromium Bioavailability and Increasing the Growth. Ecotoxicol. Environ. Saf, 192: 110303.
  • Nouairi I, Jalali K, Zribi F, Barhoumi F, Zribi K, Mhadhbi H. 2019. Seed priming with calcium chloride improves the photosynthesis performance of faba bean plants subjected to cadmium stress. Photosynthetica, 57(2): 438-445.
  • Nouri M, Haddioui A. 2021. Improving seed germination and seedling growth of Lepidium sativum with different priming methods under arsenic stress. Acta Ecologica Sinica, 41(1): 64-71.
  • Ong GH, Ho XH, Shamkeeva S, Fernando MS, Shimen A, Wong LS. 2017. Biosorption study of potential fungi for copper remediation from Peninsular Malaysia. Remediat. J, 27: 59- 63
  • Pál M, Szalai G, Janda T. 2015. Speculation: polyamines are important in abiotic stress signalling. Plant Sci, 237: 16-23.
  • Pan W, You Y, Shentu JL, Weng YN, Wang ST, Xu QR, Liu HJ, Du ST. 2020. Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. Journal of hazardous materials, 391: 122189.
  • Pereira AS, Bortolin GS, Dorneles AOS, Meneghello GE, do Amarante L, Mauch CR. 2021. Silicon seed priming attenuates cadmium toxicity in lettuce seedlings. Environmental Science and Pollution Research, 28(17): 21101-21109.
  • Pires C, Franco AR, Pereira SIA, Henriques I, Correia A, Magan N, Castro PML. 2017. Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiol. J. 1-9.
  • Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC. 2021. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere, 274: 129819.
  • Rademacher W. 2015. Plant growth regulators: backgrounds and uses in plant production. Journal of plant growth regulation, 34(4): 845-872.
  • Rafique M, Ortas I, Rizwan M, Sultan T, Chaudhary HJ, Işik M, Aydin O. 2019. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environmental Science and Pollution Research, 26(20): 20689-20700.
  • Ragab G, Saad-Allah K. 2020. Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. Journal of Plant Growth Regulation, 1-9.
  • Rai-Kalal P, Jajoo A. 2021. Priming with zinc oxide nanoparticles improves germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160: 341-351.
  • Ranjan A, Rajput VD, Minkina T, Bauer T, Chauhan A, Jindal T. 2021. Nano-particles Induced Stress and Toxicity in Plants. Environmental Nanotechnology, Monitoring and Management, 100457.
  • Rasheed R, Ashraf MA, Hussain I, Haider MZ, Kanwal U, Iqbal M. 2014. Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Brazilian Journal of Botany, 37(4): 399-406.
  • Raza Altaf A, Teng H, Saleem M, Raza Ahmad H, Adil M, Shahzad K. 2021. Associative interplay of Pseudomonas gessardii BLP141 and pressmud ameliorated growth, physiology, yield, and Pb-toxicity in sunflower. Bioremediation Journal, 25(2): 178-188.
  • Rehmanullah ZM, Inayat N, Majeed A. 2020. Application of Nanoparticles in Agriculture as Fertilizers. New Frontiers in Stress Management for Durable Agriculture, 281.
  • Rhaman MS, Rauf F, Tania SS, Khatun M. 2020. Seed priming methods: application in field crops and future perspectives. Asian Journal of Research in Crop Science, 8-19.
  • Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R. 2021. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules, 12(1): 43.
  • Rizwan M, Ali S, ur Rehman MZ, Malik S, Adrees M, Qayyum MF, Alamri SA, Alyemeni MN, Ahmad P. 2019. Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta physiologiae plantarum, 41(3): 1-12.
  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE. (2009) Soluble sugars metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav, 4: 388.
  • Šabanović M, Parić A, Briga M, Karalija E. 2018. Effect of salicylic acid seed priming on resistance to high levels of cadmium in lettuce (Lactuca sativa L.). Genetics and Applications, 2(2): 67-72.
  • Saber N, Abdel-Moneim, A, Barakat S. 1999. Role of Organic Acids in Sunflower Tolerance to Heavy Metals. Biologia Plantarum, 42: 65-73.
  • Saboor A, Mustafa G, Arshad M, Ahmad M, Hussain S, Ahmed N, Ahmad S, Shadid M, Ali MA. 2019. Seed priming and metal/metalloid stress tolerance in plants. In Priming and pretreatment of seeds and seedlings. pp. 287-311. Springer, Singapore.
  • Sachdev S, Ahmad S. 2021. Role of Nanomaterials in Regulating Oxidative Stress in Plants. In Nanobiotechnology. pp. 305- 326. Springer, Cham.
  • Sadeghipour O. 2020. Cadmium toxicity alleviates by seed priming with proline or glycine betaine in cowpea (Vigna unguiculata (L.) Walp.). Egyptian Journal of Agronomy, 42(2): 163-170.
  • Sahile AA, Khan MA, Hamayun M, Imran M, Kang SM, Lee IJ. 2021. Novel Bacillus cereus strain, ALT1, enhances growth and strengthens the antioxidant system of soybean under cadmium stress. Agronomy, 11(2): 404.
  • Sardar R, Ahmed S, Yasin NA. 2021a. Seed priming with karrikinolide improves growth and physiochemical features of Coriandrum sativum under cadmium stress. Environmental Advances, 5: 100082.
  • Sardar R, Ahmed S, Yasin NA. 2021b. Titanium Dioxide Nanoparticles Mitigate Cadmium Toxicity in Coriandrum sativum L. Through Modulating Antioxidant System, Stress Markers and Reducing Cadmium Uptake. Through Modulating Antioxidant System, Stress Markers and Reducing Cadmium Uptake. Environ Pollut, doi: 10.1016/j.envpol.2021.118373.
  • Sasaki A, Yamaji N, Ma JF. 2014. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany, 65(20): 6013-6021
  • Sathendra ER, Kumar RP, Baskar G. 2018. Microbial transformation of heavy metals. In Waste Bioremediation. pp. 249-263. Springer, Singapore.
  • Sato M, Kondoh M. 2002. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med., 196(1): 9-22.
  • Saxena B, Shukla K, Giri B. 2017. Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In Arbuscular Mycorrhizas and Stress Tolerance of Plants, Springer: Singapore, pp. 67–97.
  • Seleiman MF. 2019. Use of plant nutrients in improving abiotic stress tolerance in wheat. In Wheat Production in Changing Environments. pp. 481-495. Springer, Singapore.
  • Shah AA, Ahmed S, Abbas M, Yasin NA. 2020. Seed priming with 3-epibrassinolide alleviates cadmium stress in Cucumis sativus through modulation of antioxidative system and gene expression. Scientia Horticulturae, 265: 109203
  • Shahnawaz MD, Sanadhya DHEERA. 2017. Aluminum induced oxidative stress and antioxidants system in two barley varieties and its alleviation through ascorbic acid and salicylic acid seed priming approach. Life, 50: 26.
  • Sharifan H, Ma X, Moore JM, Habib MR, Evans C. 2019. Zinc oxide nanoparticles alleviated the bioavailability of cadmium and lead and changed the uptake of iron in hydroponically grown lettuce (Lactuca sativa L. var. Longifolia). ACS
  • Sustainable Chemistry and Engineering, 7(19): 16401-16409. Sharma SS, Dietz KJ. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot., 57: 711-26.
  • Sheteiwy MS, Fu Y, Hu Q, Nawaz A, Guan Y, Li Z, Huang Y, Hu J. 2016. Seed priming with polyethylene glycol induces antioxidative defense and metabolic regulation of rice under nano-ZnO stress. Environmental Science and Pollution Research, 23(19): 19989-2002.
  • Siddique A, Kandpal G, Kumar P. 2018. Proline accumulation and its defensive role under diverse stress condition in plants: An Overview. Journal of Pure and Applied Microbiology, 12(3): 1655-1659.
  • Sobhy S, Allah K, Kassem E, Hafez E, Sewelam N. 2019. Seed priming in natural weed extracts represents a promising practice for alleviating lead stress toxicity. Egypt. J. Exp. Boil., 15: 453.
  • Song J, Markewitz D, Wu S, Sang Y, Duan C, Cui X. 2018. Exogenous oxalic acid and citric acid improve lead (Pb) tolerance of Larix olgensis A. Henry seedlings. Forests, 9: 510
  • Sun L, Ma Y, Wang H, Huang W, Wang X, Han L, Sun W, Han E, Wang B. 2018. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar. Biochemical and Biophysical Research Communications, 497(4): 997
  • Sun X, Sun M, Chao Y, Wang H, Pan H, Yang Q, Cui Q, Lou Y, Zhuge Y. 2020. Alleviation of lead toxicity and phytostimulation in perennial ryegrass by the Pb-resistant fungus Trichoderma asperellum SD-5. Functional Plant Biology, 48(3): 333-341.
  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A. 2019. Phytohormone priming: regulator for heavy metal stress in plants. Journal of Plant Growth Regulation, 38(2): 739-752.
  • Taipodia J, Dutta J, Dey AK. 2011. Effect of nanoparticles on properties of soil. In: Proceedings of Indian Geotechnical Conference. December, Kochi
  • Tang Y, Wang L, Xie Y, Yu X, Li H, Lin L, Liao M, Wang Z, Sun G, Wang X, Liang D, Xia H, Tu L. 2020. Effects of exogenous abscisic acid on the growth and cadmium accumulation of lettuce under cadmium-stress conditions. International Journal of Environmental Analytical Chemistry, 100(6): 720-731.
  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS. 2016. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol. Biochem, 99:108-117. doi: 10.1016/j.plaphy.2015.11.001.
  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK. 2015. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Biochemistry, 96: 189-198.
  • Turner TR, James EK, Poole PS. 2013a. The plant microbiome. Genome Biol, 14: 209. doi: 10.1186/gb-2013-14-6-209.
  • Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ. 2015b. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ. Sci. Pollut. Res, 22: 2505e2514.
  • Üreyen Esertaş ÜZ, Uzunalioğlu E, Güzel Ş, Bozdeveci A, Alpay Karaoğlu Ş. 2020. Determination of bioremediation properties of soil-borne Bacillus sp. 5O5Y11 and its effect on the development of Zea mays in the presence of copper. Archives of Microbiology, 202:1817-1829.
  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman HU, Ashraf I, Sanaullah M. 2020. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ, 721: 137778.
  • Vázquez A, Zawoznik M, Benavides MP, Groppa MD. 2021. Azospirillum brasilense Az39 restricts cadmium entrance into wheat plants and mitigates cadmium stress. Plant Science, 111056.
  • Wang K, Li F, Gao M, Huang Y, Song Z. 2020. Mechanisms of trehalose-mediated mitigation of Cd toxicity in rice seedlings. Journal of Cleaner Production, 267: 121982.
  • Wang Q, Chen L, He LY, Sheng XF. 2016. Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth promoting Neorhizobium huautlense T1-17 and biochar. Agriculture Ecosystems and Environment, 228: 9-18.
  • Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B. 2019. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. J. Environ. Manag., 241: 319-327.
  • Wang Y, Zheng X, He X, Lü Q, Qian X, Xiao Q, Lin R. 2021. Effects of Pseudomonas TCd-1 on rice (Oryza sativa) cadmium uptake, rhizosphere soils enzyme activities and cadmium bioavailability under cadmium contamination. Ecotoxicology and Environmental Safety, 218: 112249.
  • Wu X, Hu J, Wu F, Zhang X, Wang B, Yang Y, Shen G, Liu J, Tao S, Wang X. 2021. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. Journal of Hazardous Materials, 405: 124047.
  • Xiao Y, Du Y, Xiao Y, Zhang X, Wu J, Yang G, He Y, Zhou Y, Pejinenburg WJGM, Luo L. 2021. Elucidating the effects of TiO2 nanoparticles on the toxicity and accumulation of Cu in soybean plants (Glycine max L.). Ecotoxicology and Environmental Safety, 219: 112312.
  • Xin J, Huang B, Dai H, Liu A, Zhou W, Liao K. 2014. Characterization of cadmium uptake, translocation, and distribution in young seedlings of two hot pepper cultivars that differ in fruit cadmium concentration. Environmental Science and Pollution Research, 21(12): 7449-7456.
  • Yaman Kumar P, Meht C. 2019. Trichoderma Mediated Mitigation of Lead Toxicity in Mustard with Special Reference to its Yield and Attributes. Journal of Emerging Technologies and Innovative Research, 6(2): 311-324.
  • Yan Z, Li X, Chen J, Tam NFY. 2015. Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid. Ecotoxicology and environmental safety, 113: 124-132.
  • Yang J, Jiang F, Ma C, Rui Y, Rui M, Adeel M, Cao W, Xing B. 2018. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study. J. Agric. Food Chem, 66: 2589-2597.
  • Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 217: 523-539
  • Yang GL, Zheng MM, Tan AJ, Liu YT, Feng D, Lv SM. 2021. Research on the mechanisms of plant enrichment and detoxification of cadmium. Biology, 10(6): 544.
  • Yu G, Ma J, Jiang P, Li J, Gao J, Qiao S, Zhao Z. 2019. IOP Conf. Ser.: Earth Environ. Sci., 310: 052004. doi:10.1088/1755- 1315/310/5/052004
  • Yu XZ, Lin YJ, Fan WJ, Lu MR. 2017. The role of exogenous proline in amelioration of lipid peroxidation in rice seedlings exposed to Cr (VI). International Biodeterioration and Biodegradation, 123: 106-112.
  • Yuan H, Liu Q, Guo Z, Fu J, Sun Y, Gu C, Xing B, Dhankher OP. 2021. Sulfur nanoparticles improved plant growth and reduced mercury toxicity via mitigating the oxidative stress in Brassica napus L. Journal of Cleaner Production, 318: 128589.
  • Yue C, Du H, Li Y, Yin N, Peng B, Cui Y. 2021. Stabilization of soil arsenic with iron and nano-iron materials: a review. Journal of Nanoscience and Nanotechnology, 21(1): 10-21.
  • Zahari NZ, Tuah PM, Rahim SA. 2021. Inoculation of Bacillus cereus enhance phytoremediation efficiency of Pistia stratiotes and Eichhornia crassipes in removing heavy metal Pb. In IOP Conference Series: Earth and Environmental Science, 847:1, 012012. IOP Publishing.
  • Zanganeh R, Jamei R, Rahmani F. 2020. Pre-sowing seed treatment with salicylic acid and sodium hydrosulfide confers Pb toxicity tolerance in maize (Zea mays L.). Ecotoxicology and Environmental Safety, 206: 111392.
  • Zeng F, Zahoor M, Waseem M, Anayat A, Rizwan M, Ahmad A, Wijaya L. 2020. Influence of metal-resistant Staphylococcus aureus strain K1 on the alleviation of chromium stress in wheat. Agronomy, 10(9): 1354.
  • Zhang C, Chen Z. 2021. Advances in study on the effects of arbuscular mycorrhizal fungi on plants in remediation of arsenic-contaminated soil. Acta Agriculturae Scandina-vica, Section B-Soil and Plant Science, 1-10.
  • Zhang W, Long J, Li J, Zhang M, Xiao G, Ye X, Chang W, Zeng H. 2019. Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice (Oryza sativa L.). Environmental Science and Pollution Research, 26(22): 23119-23128.
  • Zhao M, Liu Y, Li H, Cai Y, Wang MK, Chen Y, Xie T, Wang G. 2017. Effects and mechanisms of meta-sodium silicate amendments on lead uptake and accumulation by rice. Environ. Sci.Pollut. Res., 24: 21700-21709.
  • Zhou M, Ghnaya T, Dailly H, Cui G, Vanpee B, Han R, Lutts S. 2019. The cytokinin trans-zeatine riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the absence but not in the presence of NaCl. Chemosphere, 233: 954-965.
  • Zhou P, Adeel M, Shakoor N, Guo M, Hao Y, Azeem I, Li M, Rui Y. 2021. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: An overview. Nanomaterials, 11(1): 26.
  • Zouari M, Ahmed CB, Elloumi N, Bellassoued K, Delmail D, Labrousse P, Abdallah FB, Rouina BB. 2016. Impact of proline application on cadmium accumu-lation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicology and environmental safety, 128: 195-205.
  • Zouari M, Elloumi N, Labrousse P, Ben Rouina B, Ben Abdallah F, Ben Ahmed C. 2018. Olive trees response to lead stress: Exogenous proline provided better tolerance than glycine betaine. S. Afr. J. Bot, 118:158-165.
  • Zubair M, Shakir M, Ali Q, Rani N, Fatima N, Farooq S, Shafiq S, Kanwal N, Ali F, Nasir IA. 2016. Rhizobacteria and phytoremediation of heavy metals. Environ. Technol. Rev, 5: 112e119.
  • Zulfiqar F, Akram NA, Ashraf M. 2020. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta, 251(1): 1-17.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Evaluation of Photosynthetic Roles of Different Canopy Strata and Capitulum on Seed Yield and its Components of Spring Safflower (Carthamus tinctorius L.)

Shiva Sadighfard, Bahman Pasban Eslam, Reza Amirnia, Esmaeil Zanghani

Implementation of Food Safety Management in the Food Industry in Algeria: Benefits and Barriers Factors

Nouara Boulfoul, Fatima Brabez

Analysis of the Spatial Perception of Antalya Vocational and Technical Anatolian High School as a Historical Building

Hatice Kolak, Hüseyin Samet Aşıkkutlu, Latif Gürkan Kaya

Phytochemical, Proximate and Mineral Composition, Antioxidant and Antidiabetic Properties Evaluation and Comparison of Mistletoe Leaves from Moringa and Kolanut Trees

Olugbenga David Oloruntola, Simeon Olugbenga Ayodele

Biochar Amendments for Reducing Nitrate Leaching from Soils of Different Textural Classes in the Nigerian Savanna

Rejoice Ibrahim Solom

nvestigation of Changes in Color and Textural Quality Characteristics of Arugula (Eruca vesicaria) by Disinfectant Treatments

Janan Hossein Zadeh, Fikret Pazır

Effects of Enrichment on Amino Acid Profile, Mineral Composition and Anti- Nutritional Factors of Lafun Powder

Uche Anyaiwe, Mathew Oluwamukomi, Taiwo Aderinola

Honey as a Functional Food; Its Culinary Status

Hakan Güleç, Fulya Sarper

The Antibacterial Activities of Lavandula angustifolia L., Mentha piperita L., and Ribes nigrum L. against Oral Bacteria, and Their Antioxidant Activities

Gulten Okmen, Mahabbat Mammadhkanli, Kutbettin Arslan

How to Affect the Number of Images on the Success Rate for Detection of Weeds with Deep Learning

Guzel Mustafa, Turan Bulent, Kadioglu İzzet, Sin Bahadir, Basturk Alper, Khaled R. Ahmed