Gıda Mühendisliğinde Elektronik Dil Uygulamaları

Elektronik dil, bir dizi sensörden oluşan ve sıvı ya da sıvı forma dönüştürülmüş karmaşık örneklerin tadını karakterize etmek için kullanılan cihaz olarak tanımlanmaktadır. Bu cihaz, tıp, kimya, çevre ve gıda alanlarında kullanım olanaklarına sahiptir. Elektronik dil gıda sanayinde; meyve, sebze, et ve süt ürünleri ile içeceklerde tazeliğin kontrolünde, bozulma veya olgunlaşmanın takibinde kullanılmaktadır. Yaygın olarak, tat analizlerinde eğitimli panelistlerden yararlanılmaktadır. Ancak, tat algısının bireyler arası değişkenlik göstermesi ve öznel olması gibi dezavantajlarından dolayı elektronik dil tercih edilmektedir. Bu derlemede, farklı sistemlere sahip olan elektronik dillerin temel yapısı, çalışma prensipleri, gıdalarda kullanım alanları, avantajları ve dezavantajları ele alınmıştır.

Electronic Tongue Applications in Food Engineering

The electronic tongue is defined as the device, consisting of a series of sensors, used to characterize the taste of complex liquid or converted into liquid form samples. This device can be used in many fields of application; in medicine, chemistry, environment, and food industry. In the food industry. usually, the electronic tongue is used to control the freshness, the maturity, and the non-deterioration of fruits, vegetables, meats, beverages, and dairy products. Commonly, trained panelists participate in taste and sensory analysis. However, the electronic tongue is preferred due to the encountered disadvantages, where the taste perception is subjective and moreover, varies from an individual to another. In the present review, the basic structure of electronic tongues with different systems, working principles, food application areas, advantages, and disadvantages are discussed.

___

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJP, Zuker CS. 2000. A novel family of mammalian taste receptors. Cell., 100: 693–702. https://doi.org/10.1016/ S0092-8674(00)80705-9;
  • Beullens K, Mészáros P, Vermeir S, Kirsanov D, Legin A, Buysens S, Cap N, Nicolaï BM, Lammertyn J. 2008. Analysis of tomato taste using two types of electronic tongues. Sensors and Actuators, B: Chemical., 131: 10–17. https://doi.org/ 10.1016/j.snb.2007.12.024;
  • Bleibaum RN, Stone H, Tan T, Labreche S, Saint-Martin E, Isz S. 2002. Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices. Food Quality and Preference., 13: 409–422. https://doi.org/ 10.1016/S0950-3293(02)00017-4;
  • Borràs E, Ferré J, Boqué R, Mestres M, Aceña L, Busto O. 2015. Data fusion methodologies for food and beverage authentication and quality assessment - A review. Analytica Chimica Acta., 891: 1–14. https://doi.org/10.1016/ j.aca.2015.04.042;
  • Chung N, Ameer K, Jo Y, Kwon JH. 2019. Comparison of electronic sensing techniques for screening dried shrimps irradiated using three types of approved radiation with standard analytical methods. Food Chemistry., 286: 395–404. https://doi.org/10.1016/j.foodchem.2019.02.038;
  • Ciosek P, Wróblewski W. 2007. Sensor arrays for liquid sensing - Electronic tongue systems. Analyst., 132: 963–978. https://doi.org/10.1039/b705107g;
  • del Valle M. 2012. Sensor Arrays and Electronic Tongue Systems. International Journal of Electrochemistry., 2012: 1–11. https://doi.org/10.1155/2012/986025;
  • Di Natale C, Macagnano A, Davide F, D’Amico A, Paolesse R, Boschi T, Faccio M, Ferri G. 1997. An electronic nose for food analysis. Sensors and Actuators, B: Chemical., 44: 521–526. https://doi.org/10.1016/S0925-4005(97)00175-5;
  • Di Natale C, Macagnano A, Paolesse R, Mantini A, Tarizzo E, D’Amico A, Sinesio F, Bucarelli FM, Moneta E, Quaglia GB. 1998. Electronic nose and sensorial analysis: comparison of performances in selected cases. Sensors and Actuators, B: Chemical., 50 B50: 246–252. https://doi.org/10.1016/s0925-4005(98)00242-1;
  • Dias LA, Peres AM, Veloso ACA, Reis FS, Vilas-Boas M, Machado AASC. 2009. An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sensors and Actuators, B: Chemical., 136: 209–217. https://doi.org/10.1016/j.snb.2008.09.025;
  • Dong W, Hu R, Long Y, Li H, Zhang Y, Zhu K, Chu Z. 2019. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry., 272: 723–731. https://doi.org/10.1016/j.foodchem.2018.08.068;
  • Dong W, Zhao J, Hu R, Dong Y, Tan L. 2017. Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food Chemistry., 229: 743–751. https://doi.org/10.1016/j.foodchem.2017.02.149;
  • Donglu F, Wenjian Y, Kimatu BM, Liyan Z, Xinxin A, Qiuhui H. 2017. Comparison of flavour qualities of mushrooms (Flammulina velutipes) packed with different packaging materials. Food Chemistry., 232: 1–9. https://doi.org/10.1016/j.foodchem.2017.03.161;
  • El Alami El Hassani N, Tahri K, Llobet E, Bouchikhi B, Errachid A, Zine N, El Bari N. 2018. Emerging approach for analytical characterization and geographical classification of Moroccan and French honeys by means of a voltammetric electronic tongue. Food Chemistry., 243: 36–42. https://doi.org/10.1016/j.foodchem.2017.09.067;
  • Ferreira M, Constantino CJL, Riul A, Wohnrath K, Aroca RF, Giacometti JA, Oliveira ON, Mattoso LHC. 2003. Preparation, characterization and taste sensing properties of Langmuir-Blodgett films from mixtures of polyaniline and a ruthenium complex. Polymer., 44: 4205–4211. https://doi.org/10.1016/S0032-3861(03)00388-4;
  • Ghasemi-Varnamkhasti M, Apetrei C, Lozano J, Anyogu A. 2018. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends in Food Science and Technology., 80: 71–92. https://doi.org/10.1016/j.tifs.2018.07.018;
  • Gil L, Barat JM, Garcia-Breijo E, Ibañez J, Martínez-Máñez R, Soto J, Llobet E, Brezmes J, Aristoy MC, Toldrá F. 2008. Fish freshness analysis using metallic potentiometric electrodes. Sensors and Actuators, B: Chemical., 131: 362–370. https://doi.org/10.1016/j.snb.2007.11.052;
  • González-Calabuig A, del Valle M. 2018. Voltammetric electronic tongue to identify Brett character in wines. On-site quantification of its ethylphenol metabolites. Talanta., 179: 70–74. https://doi.org/10.1016/j.talanta.2017.10.041;
  • Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJP, Zuker CS. 2006. The cells and logic for mammalian sour taste detection. Nature., 442: 934–938. https://doi.org/10.1038/nature05084;
  • Huang L, Liu H, Zhang B, Wu D. 2015. Application of Electronic Nose with Multivariate Analysis and Sensor Selection for Botanical Origin Identification and Quality Determination of Honey. Food and Bioprocess Technology., 8: 359–370. https://doi.org/10.1007/s11947-014-1407-6;
  • Jacesko S, Abraham JK, Ji T, Varadan VK, Cole M, Gardner JW. 2005. Investigations on an electronic tongue with polymer microfluidic cell for liquid sensing and identification. Smart Materials and Structures., 14: 1010–1016. https://doi.org/10.1088/0964-1726/14/5/039;
  • Kalit MT, Marković K, Kalit S, Vahčić N, Havranek J. 2014. Primjena elektronskog nosa i elektronskog jezika u mljekarskoj industriji. Mljekarstvo., 64: 228–244. https://doi.org/10.15567/mljekarstvo.2014.0402;
  • Kantor DB, Hitka G, Fekete A, Balla C. 2008. Electronic tongue for sensing taste changes with apricots during storage. Sensors and Actuators, B: Chemical., 131: 43–47. https://doi.org/10.1016/j.snb.2007.12.003;
  • Krantz-Rülcker C, Stenberg M, Winquist F, Lundström I. 2001. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: A review. Analytica Chimica Acta., 426: 217–226. https://doi.org/10.1016/S0003-2670(00)00873-4;
  • Labrador RH, Masot R, Alcañiz M, Baigts D, Soto J, Martínez-Mañez R, García-Breijo E, Gil L, Barat JM. 2010. Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chemistry., 122: 864–870. https://doi.org/10.1016/ j.foodchem.2010.02.049;
  • Lan Y, Wu J, Wang X, Sun X, Hackman RM, Li Z, Feng X. 2017. Evaluation of antioxidant capacity and flavor profile change of pomegranate wine during fermentation and aging process. Food Chemistry., 232: 777–787. https://doi.org/10.1016/ j.foodchem.2017.04.030;
  • Latha RS, Lakshmi PK. 2012. Electronic tongue: An analytical gustatory tool. Journal of Advanced Pharmaceutical Technology and Research., 3: 3–8. https://doi.org/10.4103/ 2231-4040.93556;
  • Legin A, Rudnitskaya A, Vlasov Y. 2002. Electronic Tongues: Sensors, Systems, Applications. Sensors Update., 10: 143–188. https://doi.org/10.1002/1616-8984
  • Legin A, Rudnitskaya A, Vlasov Y, Di Natale C, Mazzone E, D’Amico A. 2000. Application of electronic tongue for qualitative and quantitative analysis of complex liquid media. Sensors and Actuators, B: Chemical., 65: 232–234. https://doi.org/10.1016/S0925-4005(99)00324-X;
  • Legin A, Rudnitskaya A, Vlasov Y, Natale C Di, Davide F, D’Amico A. 1997. Tasting of beverages using an electronic tongue. Sensors and Actuators B: Chemical., 44: 291–296. https://doi.org/https://doi.org/10.1016/S0925-4005(97)00167-6;
  • Legin A V., Rudnitskaya AM, Vlasov YG, Di Natale C, D’Amico A. 1999. Features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sensors and Actuators, B: Chemical., 58: 464–468. https://doi.org/10.1016/S0925-4005(99)00127-6;
  • Lipkowitz JB, Ross CF, Diako C, Smith DM. 2018. Discriminating aging and protein-to-fat ratio in Cheddar cheese using sensory analysis and a potentiometric electronic tongue. Journal of Dairy Science., 101: 1990–2004. https://doi.org/10.3168/jds.2017-13820;
  • Lvova L, Pudi R, Galloni P, Lippolis V, Di Natale C, Lundström I, Paolesse R. 2015. Multi-transduction sensing films for Electronic Tongue applications. Sensors and Actuators, B: Chemical., 207: 1076–1086. https://doi.org/10.1016/ j.snb.2014.10.086;
  • Milovanovic M, Žeravík J, Obořil M, Pelcová M, Lacina K, Cakar U, Petrovic A, Glatz Z, Skládal P. 2019. A novel method for classification of wine based on organic acids. Food Chemistry., 284: 296–302. https://doi.org/10.1016/ j.foodchem.2019.01.113;
  • Miyanaga Y, Tanigake A, Nakamura T, Kobayashi Y, Ikezaki H, Taniguchi A, Matsuyama K, Uchida T. 2002. Prediction of the bitterness of single, binary- and multiple-component amino acid solutions using a taste sensor. International Journal of Pharmaceutics., 248: 207–218. https://doi.org/ 10.1016/S0378-5173(02)00456-8;
  • Mou Q, He J, Li X, Yang B, Yang L, Li H. 2018. Rapid discrimination of Schisandra sphenanthera and Schisandra chinensis using electronic tongue and ultra-performance liquid chromatography coupled with chemometrics. Acta Ecologica Sinica., 38: 193–199. https://doi.org/ 10.1016/j.chnaes.2017.11.004;
  • Peris M, Escuder-Gilabert L. 2016. Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science and Technology., 58: 40–54. https://doi.org/ 10.1016/j.tifs.2016.10.014;
  • Peris M, Escuder-Gilabert L. 2009. A 21st century technique for food control: Electronic noses. Analytica Chimica Acta., 638: 1–15. https://doi.org/10.1016/j.aca.2009.02.009;
  • Persaud K, Dodd G. 1982. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature., 299: 352–355. https://doi.org/ 10.1038/299352a0;
  • Phat C, Moon B, Lee C. 2016. Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system. Food Chemistry., 192: 1068–1077. https://doi.org/10.1016/j.foodchem.2015.07.113;
  • Pigani L, Vasile Simone G, Foca G, Ulrici A, Masino F, Cubillana-Aguilera L, Calvini R, Seeber R. 2018. Prediction of parameters related to grape ripening by multivariate calibration of voltammetric signals acquired by an electronic tongue. Talanta., 178: 178–187. https://doi.org/ 10.1016/j.talanta.2017.09.027;
  • Piriya V.S A, Joseph P, Daniel S.C.G. K, Lakshmanan S, Kinoshita T, Muthusamy S. 2017. Colorimetric sensors for rapid detection of various analytes. Materials Science and Engineering C., 78: 1231–1245. https://doi.org/ 10.1016/j.msec.2017.05.018
  • Podrazka M, Báczyńska E, Kundys M, Jeleń PS, Nery EW. 2017. Electronic tongue-A tool for all tastes? Biosensors., 8: 1–24. https://doi.org/10.3390/bios8010003;
  • Polshin E, Rudnitskaya A, Kirsanov D, Legin A, Saison D, Delvaux F, Delvaux FR, Nicolaï BM, Lammertyn J. 2010. Electronic tongue as a screening tool for rapid analysis of beer. Talanta., 81: 88–94. https://doi.org/10.1016/ j.talanta.2009.11.041;
  • Ramamoorthy HV, Mohamed SN, Devi DS. 2014. E-Nose and E-Tongue: Applications and Advances in Sensor Technology. Journal of NanoScience and NanoTechnology., 2: 370–376.
  • Riul A, Dantas CAR, Miyazaki CM, Oliveira ON. 2010. Recent advances in electronic tongues. Analyst., 135: 2481–2495. https://doi.org/10.1039/c0an00292e;
  • Rudnitskaya A, Kirsanov D, Legin A, Beullens K, Lammertyn J, Nicolaï BM, Irudayaraj J. 2006. Analysis of apples varieties - comparison of electronic tongue with different analytical techniques. Sensors and Actuators, B: Chemical., 116: 23–28. https://doi.org/10.1016/j.snb.2005.11.069;
  • Rudnitskaya A, Schmidtke LM, Reis A, Domingues MRM, Delgadillo I, Debus B, Kirsanov D, Legin A. 2017. Measurements of the effects of wine maceration with oak chips using an electronic tongue. Food Chemistry., 229: 20–27. https://doi.org/10.1016/j.foodchem.2017.02.013;
  • Spielman AI, Nagai H, Sunavala G, Dasso M, Breer H, Boekhoff I, Huque T, Whitney G, Brand JG. 1996. Rapid kinetics of second messenger production in bitter taste. American Journal of Physiology-Cell Physiology., 270: C926–C931. https://doi.org/10.1152/ajpcell.1996.270.3.C926;
  • Sun H, Mo ZH, Choy JTS, Zhu DR, Fung YS. 2008. Piezoelectric quartz crystal sensor for sensing taste-causing compounds in food. Sensors and Actuators, B: Chemical., 131: 148–158. https://doi.org/10.1016/j.snb.2007.12.014;
  • Sun X, Yan Z, zhu T, Zhu J, Wang Y, Li B, Meng X. 2019. Effects on the color, taste, and anthocyanins stability of blueberry wine by different contents of mannoprotein. Food Chemistry., 279: 63–69. https://doi.org/10.1016/j.foodchem.2018.11.139;
  • Tahara Y, Toko K. 2013. Electronic tongues-a review. IEEE Sensors Journal., 13: 3001–3011. https://doi.org/ 10.1109/JSEN.2013.2263125;
  • Veloso ACA, Silva LM, Rodrigues N, Rebello LPG, Dias LG, Pereira JA, Peres AM. 2018. Perception of olive oils sensory defects using a potentiometric taste device. Talanta., 176: 610–618. https://doi.org/10.1016/j.talanta.2017.08.066;
  • Vlasov Y, Legin A. 1998. Non-selective chemical sensors in analytical chemistry: From “electronic nose” to “electronic tongue.” Fresenius’ Journal of Analytical Chemistry., 361: 255–260. https://doi.org/10.1007/s002160050875;
  • Vlasov Y, Legin A, Rudnitskaya A, Di Natale C, D’Amico A. 2005. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids: (IUPAC technical report). Pure and Applied Chemistry., 77: 1965–1983. https://doi.org/ 10.1351/pac200577111965;
  • Vlasov YG, Legin A V., Rudnitskaya AM. 1997. Cross-sensitivity evaluation of chemical sensors for electronic tongue: Determination of heavy metal ions. Sensors and Actuators, B: Chemical., 44: 532–537. https://doi.org/ 10.1016/S0925-4005(97)00241-4;
  • Wei Z, Wang J, Zhang X. 2013. Monitoring of quality and storage time of unsealed pasteurized milk by voltammetric electronic tongue. Electrochimica Acta., 88: 231–239. https://doi.org/10.1016/j.electacta.2012.10.042;
  • Winquist F, Wide P, Lundström I. 1997. An electronic tongue based on voltammetry. Analytica Chimica Acta., 357: 21–31. https://doi.org/10.1016/S0003-2670(97)00498-4;
  • Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. 2011. Taste sensing systems (electronic tongues) for pharmaceutical applications. International Journal of Pharmaceutics., 417: 256–271. https://doi.org/10.1016/j.ijpharm.2010.11.028
  • Xu L, Wang X, Huang Y, Wang Y, Zhu L, Wu R. 2019. A predictive model for the evaluation of flavor attributes of raw and cooked beef based on sensor array analyses. Food Research International., 122: 1610.1016/j.foodres.2019.03.047;
  • Zhang H, Cui J, Tian G, DiMarco24. https://doi.org/ Crook C, Gao W, Zhao C, Li 350. G, Lian Y, Xiao H, Zheng J. 2019. Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chemistry., 289: 340
  • Zhang MX, Wang XC, Liu Y, Xu XL, Zhou GH. 2012. Isolation and identification of flavour peptides from Puffer fish (Takifugu obscurus) muscle using an electronic tongue and MALDI1470. TOF/TOF MS/MS. Food Chemistry., 135: 1463https://doi.org/10.1016/j.foodchem.2012.06.026;
  • Zhu N, Zhu Y, Yu N, Wei Y, Zhang J, Hou Y, Sun A dong. 2019. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchippulsed electric field. Food https://doi.org/10.1016/j.foodchem.20 19.03.063 Chemistry., 274: 146 10.1016/j.foodchem.2018.08.092155. https://doi.org/ 1471
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Aydın/Sultanhisar Koşullarında Yetiştirilen Festival ve Camarosa Çilek Çeşitlerinin Verim ve Bazı Meyve Kalite Özelliklerinin Belirlenmesi

Seda ERDOĞAN BAYRAM

İç Anadolu Bölgesinin Organik Koyunculuk Potansiyelinin Değerlendirilmesi

Mehmet Akif BOZ, Hacer TÜFEKÇİ

Orman Alanlarında Kabuk Böceklerinin (Coleoptera: Curculionidae, Scolytinae) Mücadelesinde Monoterpenlerin Kullanımı

Serdar SATAR, Gülsevim TİRİNG, Okan ÖZKAYA

Morphometric Characterization of the Akbaş (Akbash) Turkish Shepherd Dog

Milivoje UROSEVİC, Darko DROBNJAK, Petar STOJİC, Yusuf Ziya OĞRAK

The Effect of Different Agricultural Wastes on Aroma Composition of Shiitake (Lentinula edodes (Berk.) Pegler) Mushroom

Gökhan BAKTEMUR, Ecem KARA, Hatıra TAŞKIN, Zeynep Dilan ÇELİK

Willingness to Pay for Biofuel Among Small-Scale Food Processors in Ibadan Metropolis, Nigeria

Oluwakemi Adeola OBAYELU, Aminat Olajumoke JİMOH, Foluso TEMİTOPE

Effect of Domestic Wastewater Sewage Sludge Applications on Yield and Nutrient Uptake of Tomato Plant

MUSTAFA ÖZTÜRK, Ahmet DEMİRBAŞ, Şükrü ASLAN

Güneydoğu Anadolu Bölgesinin Farklı Lokasyonlarından Toplanan Salvia multicaulis VAHL. Türünde Ot Kalite Değerlerinin Belirlenmesi

Mehmet Salih SAYAR, Erdal ÇAÇAN, Mehmet BAŞBAĞ

Seed Yield and Some Agricultural Traits of Cowpea (Vigna unguiculata L. Walp.) Grown with Different Densities as a Double Crop

Mehmet CAN, İlknur AYAN, Hussein Abdulkadir OMAR, Zeki ACAR, Gülcan KAYMAK, HANİFE MUT

Electronic Tongue Applications in Food Engineering

Zeliha KAYA, İlkay KOCA