Evaluation of Microbiological, Physicochemical and Sensorial Properties of Purple Basil Kombucha Beverage

Kombucha is a beverage prepared from fermented traditionally-flavored black or green tea (Camellia sinensis L.) with symbiotic culture of bacteria and yeast (SCOBY). In this study, the changes in the physicochemical, bioactive components, microbial quality and sensory properties of black tea kombucha and different proportions of purple basil (Ocimum basilicum L.) kombucha after fermentation were evaluated. While the pH values decreased during storage, the total acidity value increased. Purple basil had higher total phenolic content at all storage times than the other samples. At the end of the study, it was concluded that the total amount of phenolic compounds and flavonoids in purple basil was highly conserved compared to the other samples. Antioxidant values on the 30th day determined highest DPPH (radical scavenging activity) (64.19%) and CUPCAC (cupric reducing antioxidant capacity) (41.48%) in the purple basil kombucha beverage. When the color values were examined, it was found that there were statistically significant differences in the overall storage process in all samples. There was no significant change inconsistency, smell, taste and general acceptance with the storage process. As a result, 30-day storage period was found to be more successful and favorable for 100% purple basil kombucha tea.

___

AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC.

Apak R, Güçlü K, Özyürek M, Esin Karademir S, Erçağ E. 2006. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci., Nutr. 57: 292–304. doi:10.1080/09637480600798132

Battikh H, Bakhrouf A, Ammar E. 2012. Antimicrobial effect of Kombucha analogues. LWT - Food Sci. Technol., 47: 71–77. doi:10.1016/J.LWT.2011.12.033

Battikh H, Chaieb K, Bakhrouf A, Ammar E. 2013. Antibacterial and antifungal activities of black and gren kombucha teas. J. Food Biochem., 37: 231–236. doi:10.1111/j.1745- 4514.2011.00629.x

Bhattacharya S, Gachhui R, Sil PC. 2013. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem. Toxicol. 60: 328–340. doi:10.1016/j.fct.2013.07.051

Blois MS. 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 181: 1199–1200. doi:10.1038/1811199a0

Cabrera C, Giménez R, López MC. 2003. Determination of Tea Components with Antioxidant Activity. J. Agric. Food Chem. 51: 4427–4435. doi:10.1021/jf0300801

Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R. 2016. Kombucha tea fermentation: Microbial and biochemical dynamics. Int. J. Food Microbiol. 220: 63–72. doi:10.1016/J.IJFOODMICRO.2015.12.015

Chu SC, Chen C. 2006. Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chem. 98: 502–507. doi:10.1016/J.FOODCHEM.2005.05.080

Cvetković D, Markov S, Djurić M, Savić D, Velićanski A. 2008. Specific interfacial area as a key variable in scaling-up Kombucha fermentation. J. Food Eng. 85: 387–392. doi:10.1016/j.jfoodeng.2007.07.021

Cvetkovic DD. 2008. Kombucha made from medical herbs - biological activity and fermentation parameters. PhD thesis, Univ of Novi Sad. Faculty of Tecnology, Novi Sad.

Dewanto V, Wu X, Adom KK, Liu RH. 2002. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 50: 3010–3014. doi:10.1021/jf0115589

Dufresne C, Farnworth E. 2000. Tea, Kombucha, and health: a review. Food Res. Int. 33: 409–421. doi:10.1016/S0963- 9969(00)00067-3

Ernst E, 2003. Kombucha: A Systematic Review of the Clinical Evidence. Complement. Med. Res. 10: 85–87. doi:10.1159/000071667

Gramza-Michałowska A, Kulczyński B, Xindi Y, Gumienna M. 2016. Research on the effect of culture time on the kombucha tea beverage’s antiradical capacity and sensory value. Acta Sci. Pol. Technol. Aliment. 15: 447–457. doi:10.17306/J.AFS.2016.4.43

Güldane M, Bayram M, Topuz S, Kaya C, Gök HB, Murat B, Koç M. 2017. Beyaz, Siyah ve Yeşil Çay Kullanilarak Üretilen Kombuchalarin Bazi Özelliklerinin Belirlenmesi 34: 46–56. doi:10.13002/jafag1101

Hrnjez D, Vaštag Ž, Milanović S, Vukić V, Iličić M, Popovic L, Kanurić K. 2014. The biological activity of fermented dairy products obtained by kombucha and conventional starter cultures during storage. J. Funct. Foods 10: 336–345. doi:10.1016/J.JFF.2014.06.016

İleri̇ Büyükoğlu T, Taşçi F, Şahi̇ndokuyucu F. 2010. Kombucha ve Sağlik Üzerine Etkileri, Uludag Univ. J. Fac Vet. Med.

Jayabalan R, Malini K, Sathishkumar M, Swaminathan K, Yun SE. 2010. Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Sci. Biotechnol. 19: 843–847. doi:10.1007/s10068-010-0119-6

Jayabalan R, Marimuthu S, Swaminathan K. 2007. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem. 102: 392–398. doi:10.1016/J.FOODCHEM.2006.05.032

Kallel L, Desseaux V, Hamdi M, Stocker P, Ajandouz EH. 2012. Insights into the fermentation biochemistry of Kombucha teas and potential impacts of Kombucha drinking on starch digestion. Food Res. Int. 49: 226–232. doi:10.1016/J.FOODRES.2012.08.018

Lončar E, Djurić M, Malbaša R, Kolarov LJ, Klašnja M. 2006. Influence of Working Conditions Upon Kombucha Conducted Fermentation of Black Tea. Food Bioprod. Process. 84: 186–192. doi:10.1205/FBP.04306

Malbaša R, Lončar E, Djurić M. 2008. Comparison of the products of Kombucha fermentation on sucrose and molasses. Food Chem. 106: 1039–1045. doi:10.1016/J.FOODCHEM.2007 .07.020

Malbaša RV, Lončar ES, Vitas JS, Čanadanović-Brunet JM. 2011. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem. 127: 1727–1731. doi:10.1016/J.FOODCHEM.2011.02.048

Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152–159. doi:10.1016/S1360-1385(97)01018-2

Singleton V, Rossi A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Vitic. 16: 144–158.

Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. 2005. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. Mol. Mech. Mutagen. 579: 200–213. doi:10.1016/J.MRFMMM.2005.03.023

Sun TY, Li JS, Chen C. 2015. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. J. Food Drug Anal. 23: 709–718. doi:10.1016/J.JFDA.2015.01.009

Tarhan K. 2017. Kombucha çayi üretiminde farkli substrat kaynaklarinin kullanimi, MSc thesis, Akdeniz Univ. İnstitute of Science, Antalya.

Teoh AL, Heard G, Cox J. 2004. Yeast ecology of Kombucha fermentation. Int. J. Food Microbiol. 95: 119–126. doi:10.1016/j.ijfoodmicro.2003.12.020

Varela-Santos E, Ochoa-Martinez A, Tabilo-Munizaga G, Reyes JE, Pérez-Won M, Briones-Labarca V, Morales-Castro J. 2012. Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innov. Food Sci. Emerg. Technol. 13: 13–22.

Vázquez-Cabral BD, Rocha-Guzmán NE, Gallegos-Infante JA, González-Herrera SM, González-Laredo RF, MorenoJiménez MR, Córdova-Moreno ITS. 2014. Chemical and sensory evaluation of a functional beverage obtained from infusions of oak leaves (Quercus resinosa) inoculated with the kombucha consortium under different processing conditions. Nutrafoods 13: 169–178. doi:10.1007/s13749-014-0035-0

Velićanski AS, Cvetković DD, Tumbas Šaponjac VT, Vulić, JJ, Vulić JJ. 2014. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa officinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts. Food Technol. Biotechnol. 52: 420– 429. doi:10.17113/ftb.52.04.14.3611

Wang L, Kim D, Lee C. 2000. Effects of heat processing and storage on flavanols and sensory qualities of green tea beverage. J. Agric. Food Chem. 48: 4227–32.

Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559. doi:10.1016/S0308-8146(98)00102-2

Złotek U, Szymanowska U, Karaś M, Świeca M. 2016. Antioxidative and anti‐inflammatory potential of phenolics from purple basil (Ocimum basilicum L.) leaves induced by jasmonic, arachidonic and β‐aminobutyric acid elicitation. Int. J. Food Sci. Technol. 51: 163–170. doi:10.1111/ijfs.12970[A1]