Effect of Using Drone Brood Cells as Traps Against Varroa destructor (Varroa Mite)

Today, the honeybee parasite Varroa destructor is thought to be the most dangerous creature in the beekeeping industry worldwide. In this study, the efficacy of using drone brood cells (known to have no residue concerns in bee products and harmless on bee health) as traps against V. destructor was investigated. A total of 16 honeybee (Apis mellıfera) colonies with V. destructor infestation percentage of less than 5% were used for the trial. The treatment group consisted of 8 colonies that were randomly assigned to molded drone comb (comb with 5.4 mm hexagonal cells). The other 8 were assigned to unmolded comb to form the control group. In the trial groups, after 20 days (from 10th May), all drone combs with complete pupation were removed and destroyed on 30th May, 20th June, 10th July, 30th July, and 20th August. During the trial, varroa mite infestation rate (mean abundance), colony development, and varroa mite preference for drone and work bee brood cells were determined. The results showed that the application of drone brood cells as a control method was statistically significant against V. destructor, and did not negatively affect colony development. On the other hand, V.destructor's preference for both drone and worker bee brood cells among the groups was not statistically significant. In conclusion, drone brood cells ensured an approximately 43% success rate as traps against V. destructor compared to the control group. The effective application of drone brood cells as traps in combination with other Varroa mite control methods should be investigated

___

Al Toufailia H, Scandian L, Ratnieks FL. 2018. Towards integrated control of varroa: 3) mortality proportion from early spring trapping in drone brood. Journal of Apicultural Research, 57(3): 433-437. doi.org/10.1080/00218839.2018. 1454292.

Allen MD. 1965. The effect of a plentiful supply of drone comb on colonies of honeybees. Journal of Apicultural Research, 4 (2): 109-119. doi.org/10.1080/00218839.1965.11100114.

Anderson DL, Trueman JW. 2000. Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental and applied acarology, 24(3): 165-189.

Berry JA, Hood WM, Pietravalle S, Delaplane KS. 2013. Fieldlevel sublethal effects of approved bee hive chemicals on honey bees (Apis mellifera L). PloS One, 8(10): e76536. doi.org/10.1371/journal.pone.0076536.

Calderone NW. 2005. Evaluation of drone brood removal for management of Varroa destructor (Acari: Varroidae) in colonies of Apis mellifera (Hymenoptera: Apidae) in the northeastern United States. Journal of Economic Entomology, 98(3): 645-650. doi.org/10.1603/0022-0493- 98.3.645.

Calis JN, Boot WJ, Beetsma J, Van Den Eijnde JH, De Ruijter A, Van Der Steen JJ. 1999. Effective biotechnical control of Varroa: applying knowledge on brood cell invasion to trap honey bee parasites in drone brood. Journal of Apicultural Research, 38(1-2): 49-61. doi.org/10.1080/00218839.1999. 11100995.

Charrière JD, Imdorf A, Bachofen B, Tschan A. 2003. The removal of capped drone brood: an effective means of reducing the infestation of varroa in honey bee colonies. Bee World, 84(3): 117-124. doi.org/10.1080/0005772X.2003. 11099587.

Çetin M. 2010. Bal Arısı (Apis mellifera L.,) Kolonilerinde Varroa destructor’un Kontrolünde Bitkisel, Kimyasal ve Biyoteknik Uygulama Yöntemlerinin karşılaştırılması. Yüksek Lisans Tezi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, 2010. (In Turkish).

Fuchs S. 1990. Preference for drone brood cells by Varroa jacobsoni Oud in colonies of Apis mellifera carnica. Apidologie, 21(3): 193-199. doi.org/10.1051/apido:19900 304.

Goodwin RM, Taylor MA, McBrydie HM, Cox HM. 2005. Base levels of resistance to common control compounds by a New Zealand population of Varroa destructor. New Zealand Journal of Crop and Horticultural Science, 33(4): 347-352. doi.org/10.1080/01140671.2005.9514369.

Goulson D, Nicholls E, Botías C, Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347: 6229. doi.org/10.1126/ science.1255957.

Gregorc A, Sampson B. 2019. Diagnosis of Varroa Mite (Varroa destructor) and Sustainable Control in Honey Bee (Apis mellifera) Colonies-A Review. Diversity, 11(12): 243. doi.org/10.3390/d11120243.

Guichard M, Dietemann V, Neuditschko M, Dainat B. 2020. Advances and perspectives in selecting resistance traits against the parasitic mite Varroa destructor in honey bees. Genetics Selection Evolution, 52(1): 1-22. doi.org/10.1186/ s12711- 020-00591-1.

Huang Z. 2001. Mite zapper-a new and effective method for Varroa mite control. American Bee Journal, 141(10): 730-732.

Ifantidis MD. 1983. Ontogenesis of the mite Varroa jacobsoni in worker and drone honeybee brood cells. Journal of Apicultural Research, 22(3): 200-206. doi.org/10.1080/002 18839.1983.11100588.

Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the royal society B: Biological Sciences, 274 (1608): 303-13. doi.org/10.1098/rspb.2006.3721.

Liu Z, Chen C, Niu Q, Qi W, Yuan C, Su S, Liu S, Zhang Y, Zhang X, Ji T, Dai R. 2016. Survey results of honey bee (Apis mellifera) colony losses in China (2010–2013). Journal of Apicultural Research, 55 (1): 29-37. doi.org/10.1080/00218 839.2016.1193375.

Mancuso T, Croce L, Vercelli M. 2020. Total brood removal and other biotechniques for the sustainable control of Varroa mites in honey bee colonies: economic impact in beekeeping farm case studies in northwestern Italy. Sustainability, 12(6):2302. doi.org/10.3390/su12062302.

Martin SJ. 1994. Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L. under natural conditions. Experimental and Applied Acarology, 18(2): 87- 100. doi.org/10.1007/BF00055033.

Muz MN, Aslan S, Girişgin AO. 2014. Balarılarında Varroa destructor Enfestasyonuna Karşı Pudra Şekeri Etkinliğinin Araştırılması. Uludağ Üniversitesi Veteriner Fakültesi Dergisi, 33(1-2): 21-26. (In Turkish).

Panziera D, van Langevelde F, Blacquière T. 2017. Varroa sensitive hygiene contributes to naturally selected varroa resistance in honey bees. Journal of Apicultural Research, 56(5): 635-642. doi.org/10.1080/00218839.2017.1351860.

Potts SG, Roberts SP, Dean R, Marris G, Brown MA, Jones R, Neumann P, Settele J. 2010 Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research, 49(1): 15-22. doi.org/10.3896/IBRA.1.49.1.02.

Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, Lim D, Joklik J, Cicero JM, Ellis JD, Hawthorne D. 2019. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences, 116(5): 1792-1801. doi.org/10.1073/ pnas.1818371116.

Rehm SM, Ritter W. 1989. Sequence of the sexes in the offspring of Varroa jacobsoni and the resulting consequences for the calculation of the developmental period. Apidologie, 20(4): 339-343.

Released SI. 2008. SPSS statistics for windows, version 17.0. Chicago: SPSS Inc.

Rosenkranz P, Aumeier P, Ziegelmann B. 2010. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103: S96-119. doi.org/10.1016/j.jip.2009.07.016.

Smart MD, Otto CR, Carlson BL, Roth CL. 2018. The influence of spatiotemporally decoupled land use on honey bee colony health and pollination service delivery. Environmental Research Letter, 13(8): 084016. doi.org/10.3390/insects8020 048.

Szczurek A, Maciejewska M, Bąk B, Wilde J, Siuda M. 2019. Semiconductor gas sensor as a detector of Varroa destructor infestation of honey bee colonies–Statistical evaluation. Computers and Electronics in Agriculture, 162: 405-11. doi.org/10.1016/j.compag.2019.04.033.

Traynor KS, Mondet F, de Miranda JR, Techer M, Kowallik V, Oddie MA, Chantawannakul P, McAfee A. 2020. Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends in Parasitology, 36(7): 592-606. doi.org/ 10.1016/j.pt.2020.04.004.

Wang H, Zhang L, Jin S. 2019. A Biological Method for Trapping Varroa destructor and Collecting Male Wasp Pupae. International Journal of Applied Agricultural Sciences, 5(4): 94. doi.org/10.11648/j.ijaas.20190504.13.

Wantuch HA, Tarpy DR. 2009. Removal of drone brood from Apis mellifera (Hymenoptera: Apidae) colonies to control Varroa destructor (Acari: Varroidae) and retain adult drones. Journal of Economic Entomology, 102(6): 2033-2040. doi.org/10.1603/029.102.0603.

Wilkinson D, Smith GC, Hutton S, York Y. 2002. Modeling the Efficiency of Sampling and Trapping Varroa destructor in the Drone Brood of Honey bees (Apis mellifera). American Bee Journal, 142(3): 209-212.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Farklı Olgunluk Dönemlerinde Hasat Edilen Yonca Bitkisinden Hazırlanan Silajlarda Laktik Asit Bakterisi ve Enzim Karışım İnokulant İlavesinin Silaj Fermantasyon Özellikleri ve Yem Değeri Üzerindeki Etkileri

Selma Büyükkılıç Beyzi, Berrin Okuyucu, Mehmet Levent Özdüven

Stable C and N Isotope Composition of European Anchovy, Engraulis encrasicolus, from the Marmara Sea and the Black Sea

Tanju MUTLU

The Change of Some Food Elements in Soil Depending On Shadowing and Fertilization

İnci Sevinç Kravkaz KUŞÇU, Sayed Moqadas SHARAF

Review on Production of Single-Cell Protein from Food Wastes

Nura ABDULLAHİ, Munir Abba DANDAGO, Alkasim Kabiru YUNUSA

Effect of Using Drone Brood Cells as Traps Against Varroa destructor (Varroa Mite)

Mustafa GÜNEŞDOĞDU, Ahmet ŞEKEROĞLU, Brian TAİNİKA

Cointegration Analysis of Exchange Rate Volatility and Agricultural Exports in Turkey: an Ardl Approch

Turgut ORMAN, İlkay DELLAL

Allelopathic Mechanisms in Fire-Prone Ecosystems

Nursema AKTEPE, Ömer KÜÇÜK

Green Tea: Conventional Facts and its Frontier Prospect on Health- A review

Swarup Kumar KUNDU, M. SOHİDULLAH, Shonkor Kumar DAS

Adoption of Improved Maize Varieties as a Sustainable Agricultural Intensification in Eastern Ethiopia: Implications for Food and Nutrition Security

Mengistu KETEMA, Kibebew KİBRET, Feyisa HUNDESSA, Tewodros BEZU

Determining the Factors Affecting 305-Day Milk Yield of Dairy Cows with Regression Tree

Serdar GENC, Mehmet MENDES