Effect of Different Inorganic Substrates on Growth Performance of African Catfish (Clarias gariepinus, Burchell 1822) and Lettuce (Lactuca sativa L.)

Lettuce (Lactuca sativa L.) and African catfish (Clarias gariepinus) were preferred to grow in aquaponics due to their high and fast productivity growth. However, limited research was conducted on the impact on different inorganic substrates’ growth performance in aquaponics. In this study, lettuce’s growth performance was determined in four different kinds of inorganic substrates in Nutrient Film Technique (NFT) aquaponics by measuring final weight, daily growth rate, stem diameter, plant and root lengths, leaf number per plant and shoot/root ratio. Polyester fiber, rock wool, zeolite, and gravel were used as inorganic substrate materials. A constant flow rate of 0.3 L/min was maintained using with a submersible pump motor. At the end of the study, the African catfish’s feed conversion ratio was estimated to be 0.66, while the specific growth rate (SGR) was 2.3%. Total lettuce yields for polyester fiber, rock wool, zeolite and gravel were obtained as 5.072,22 kg/m2 , 4.934,03 kg/m2 , 6.067 kg/m2 , and 5.382,64 kg/m2 respectively. There were statistically significant differences for daily growth rate between the inorganic substrates that the significantly highest values were recorded in the zeolite. The results revealed that initial plant length and shoot/root ratio were the significant factors on the growth performance for lettuce in aquaponic system tested. The best lettuce yield performance was observed in zeolite substrate but, economically available option was found as gravel for hydroponic troughs.

___

Adler P. 2001. Overview of economic evaluation of phosphorus removal by plants. Aquaponics Journal. 5: 15-18.

Akinwole AO, Faturoti EO. 2007. Biological performance of African catfish (Clarias gariepinus) cultured in recirculating system in Ibadan. Aquacultural Engineering. 35: 18-23. https://doi.org/10.1016/j.aquaeng.2006.05.001

Antoniou P, Hamilton J, Koopman B, Jain R, Holloway B, Lyberatos G, Svoronos SA. 1990. Effect of temperature and pH on the effective maximum specific growth rate of nitrifiying bacteria. Water Res. 24: 97-101. https://doi.org/ 10.1016/0043-1354(90)90070-M

Abdullahi YA, Akunna JC, White NA, Hallett PD, Wheatley R. 2008. Investigating the effects of anaerobic and aerobic posttreatment on quality and stability of organic fraction of municipal solid amendment. Bioresource Technology. 99, 8631-8636. https://doi.org/10.1016/j.biortech.2008.04.027

APHA. 1998. Standart Methods for the Examination of Water and Wastewater. 20th edition. American Public Health Association, Washington, D.C.

Baßmann B, Brenner M, Palm HW. 2017. Stress and welfare of African catfish (Clarias gariepinus Burchell, 1822) in a coupled aquaponic system. Water. 9(7): 504. https://doi.org/ 10.3390/w9070504

Baßmann B, Harbach H, Weißbach S, Palm HW. 2020. Effect of plant density in coupled aquaponics on the welfare status of African catfish, Clarias gariepinus. Journal of the World Aquaculture Society, 51(1): 183-199. https://doi.org/ 10.1111/jwas.12574

Blackburne R, Vadivelu VM, Yuan Z, Keller J. 2007. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res. 41: 3033-3042. https://doi.org/10.1016/j.watres.2007.01.043

Cebron A, Garnier J. 2005. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: Detection, quantification and growth along the lower Seine River (France). Water Res. 39 (20): 4979-4992. https://doi.org/ 10.1016/j.watres.2005.10.006

Cerozi BD, Fitzsimmons K. 2016. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresource Technology. 219: 778–781 https://doi.org/10.1016/j.biortech.2016.08.079

Chen SL, Coffin DE, Malone RF. 1997. Sludge production and management for recirculating aquacultural systems. Journal of World Aquaculture Society, 28(4): 303-315. https://doi.org/ 10.1111/j.1749-7345.1997.tb00278.x

Da Silva Cerozi B, Fitzsimmons K. 2017. Effect of dietary phytase on phosphorus use efficiency and dynamics in aquaponics. Aquaculture International, 1-12. https://doi.org/ 10.1007/s10499-016-0109-7.

Danaher JJ, Shultz RC, Rakocy JE, Bailey DS. 2013. Alternative solids removal for warm water recirculating raft aquaponic systems. Journal of the World Aquaculture Society, 44(3): 374-383. https://doi.org/10.1111/jwas.12040

Davidson J, Helwig N, Summerfelt ST. 2008. Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent. Aquacultural Engineering, 39(1): 6-15. https://doi.org/10.1016/j.aquaeng.2008.04.002

Ebeling JM, Timmons MB. 2012. Recirculating aquaculture systems J.H. Tidwell (Ed.), Aquaculture Production Systems, Wiley-Blackwell (2012), pp. 245-277.

Eding E, Kamstra A. 2001. Design and performance of recirculation systems for European eel and African catfish. In: Porceeding of AES Workshop, January 23, Orlando, Florida, USA. pp. 18-28.

Endut A, Jusoh A, Ali N, Wan Nik WB, Hassan A. 2010. A study on the optimal hydraulic loading rate and plantratiosin recirculation aquaponics system. Bioresource Technology. 101: 1511-1517. https://doi.org/10.1016/j.biortech.2009.09.040

FAO 2016. http://www.fao.org/nr/water/aquastat/data/query/ results.html

Geisenhoff LO, Rodrigo AJ, Santos RC, Oliviera FC, Gomes EP. 2016. Effect of different substrates in aquaponics lettuce production associated with intensive tilapia farming with water recirculation systems. Journal of the Brazilian Association of Agricultural Engineering. 36(2): 291-299. https://doi.org/ 10.1590/1809-4430-Eng.Agric.v36n2p291-299/2016

Gell K, Van Groenigen JW, Cayuela ML. 2011. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity.Journal of Hazardous Materials. 186, 2017-2025. https://doi.org/10.1016/j.hazmat.2010.12.105

Hagopian DS, Riley JG. 1998. A closer look at the bacteriology of nitrification. Aquacultural Engineering. 18: 223-244.

Harland J, Lane S, Price D. 1997. Further experiences with recycled zeolite as a substrate for the sweet pepper crop. In International Symposium on Growing Media and Hydroponics. 481: 187-196.

Hogendoorn H, Jansen JAJ, Koops WJ, Machiels MAM, Van Ewijk PH, Van Hees JP. 1983. Growth and production of the African catfish, Clarias lazera (C. & V.): II. Effects of body weight, temperature and feeding level in intensive tank culture. Aquaculture, 34(3-4): 265-285.

Jhingran VG. 1991. Fish and Fisheries of India. 3 rd ed. Hindustan Publishing Corporation. Delhi, India. 727.

Jordan RA, Riberio EF, Oliveira FC, Geisenhoff LO, Martins EAS. 2018. Yield of lettuce grown in hydroponic and aquaponics systems using different substrates. Revista Brasileira de Engenharia Agricola e Ambiental. 8: 525-529. https://doi.org/10.1590/1807-1929/agriambi.v22n8p525-529

Khandaker M, Kotzen B. 2018. The potential for combining living wall and vertical farming systems with aquaponics with special emphasis on substrates. Aquaculture Research. 49, 1454-1468. doi:10.1111/are.13601

Lennard WA, Leonard BV. 2006. A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquaculture International. 14:539-550. doi:10.1007/s10499-006-9053-2

Losordo T, DeLong D, Guerdat T. 2009. Advances in technology and practice for land-based aquaculture systems: tank-based recirculating systems for finfish production. In New Technologies in Aquaculture (pp. 945-983). Woodhead Publishing. https://doi.org/10.1533/9781845696474.6.945

Love DC, Fry JP, Genello L, Hill ES, Frederick JA, Li X, Semmens K. 2014. An international survey of aquaponics practitioners. PloS one, 9(7): e102662. https://doi.org/10.1371/ journal. pone.0102662

Marschner H. 2003. Mineral nutrition of higher plants. Academic Press, San Diego, California. doi:10.1146/annurev.pp.31

Maucieri C, Nicoletto C, Junge R, Schmautz Z, Sambo P, Borin M. 2018. Hydroponic systems and water management in aquaponics: A review. Italian Journal of Agronomy. 13, 1012-1023.

Maucieri C, Nicoletto C, Van Os, E, Anseeuw D, Van Havermaet R, Junge R. 2019. Hydroponic technologies. In Aquaponics Food Production Systems (pp. 77-110). Springer, Cham.

Mažeikiene A, Valentukevičiene M, Rimeika M, Matuzevičius A B, Dauknys R. 2008. Removal of nitrates and ammonium ions from water using natural sorbent zeolite (clinoptilolite). Journal of Environmental Engineering and Landscape Management, 16(1): 38-44. https://doi.org/10.3846/1648- 6897.2008.16.38-44

Mchunu N, Lagerwall G, Senzanje A. 2018. Aquaponics in South Africa: Results of a national survey. Aquaculture Reports, 12, 12-19. https://doi.org/10.1016/j.aqrep.2018.08.001

McMurtry MR, Nelson PV, Sanders DC. 1990. Sand culture of vegetables using recirculated aquacultural effluents. Applied Agricultural Research, 5, p. 280-284.

McMurtry MR, Sanders DC, Cure JD, Hodson RG. 1997. Effects of biofilter/culture tank volume ratios on productivity of a recirculating fish/vegetable co-culture system. Journal of Applied Aquaculture. 7:33-51. doi:10.1300/j028v07n04_03

Milicic V, Thorarinsdottir R, Santos MD, Hancic MT. 2017. Commercial aquaponics approaching the European Market: To consumers’ perceptions of aquaponics products in Europe. Water, 9(2): 80-102. https://doi.org/10.3390/w9020080

Molden D. 2017. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London; Colombo: Earthscan; International Water Management Institute, 39s. https://doi.org/10.1007/ s10795-008-9044-8

Nelson RI. 2007. Ten aquaponic systems around the world. Aquaponics Journal. 46:8-12.

Nicola S, Hoeberechts J, Fontana E. 2005. Comparison between traditional and soilless culture systems to produce rocket (Eruca sativa) with low nitrate content. Acta Horticulturae. 697: 549- 555. https://doi.org/10.17660/ActaHortic.2005.697.72

Nuwansi KKT, Verma AK, Prakash C, Tiwari VK, Chandrakant MH, Shete AP, Prabhath GPWA. 2016. Effect of water flow rate on polyculture of koi carp (Cyprinus carpio var. koi) and goldfish (Carrasius auratus) with water spinach (Ipomoea aquatica) in recirculating aquaponic system. Aquaculture. https://doi.org/10.1007/s10499-015-9932-5

Palm HW, Bissa K, Knaus U. 2014. Significant factors affecting the economic sustainability of closed aquaponic systems. Part II: fish and plant growth. Aquaculture, Aquarium, Conservation & Legislation. 7(3): 162-175.

Rakocy JE. 1984. A recirculating system for tilapia culture and vegetable hydroponics. Smitherman R. O., Trave D., (ed). Auburn Symposium on Fisheries and Aquaculture. Auburn, AL. p. 103-114.

Rakocy JE, Bailey DS, Schultz KA, Cole WM. 1997. Evaluation of a commercial-scale aquaponic unit for the production of tilapia and lettuce. 4th International Symposium on Tilapia in Aquaculture. 1: 357-372.

Rakocy JE, Bailey DS, Schultz RC, Thoman ES. 2004. Update on tilapia and vegetable production in the UVI aquaponic system. 31 October 2019. https://cals.arizona.edu/ azaqua/ista/ista6/ista6web/pdf/676.pdf

Rakocy JE, 2012. Aquaponics: integrating fish and plant culture. Aquaculture production systems. 1, 343-386.

Robinson MV, Alvarino JR, Duran M. 2011. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics. Spanish Journal of Agricultural Research. 9(2): 537-545.

Roosta HR, Afsharipoor S. 2012. Effects of different cultivation media on vegetative growth, ecophysiological traits and nutrients concentration in strawberry under hydroponic and aquaponics cultivation systems. Advances in Environmental Biology. 6(2): 543-555.

Sanchez M, Gomez X, Barriconal G, Cuetos MJ, Morani A. 2008. Assessment of the stability of livestock farm wastes treated by anaerobic digestion. Int. Biodeterior. Biodegrad. 62, 421- 426. https://doi.org/10.1016/j.ibiod.2008.04.002

Schram E, Roques JA, Abbink W, Yokohama Y, Spanings T, de Vries P, Flik G. 2014. The impact of elevated water nitrate concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822). Aquaculture research. 45(9): 1499-1511. https://doi.org/ 10.1111/are.12098

Sengbusch VR, Meske CH, Szablewski W, Lühr B. 1967. Gewichtszunahme von Karpfen in Kleinstbehaltern, zugleich ein Beitrag zur Aufklarung des Raumfaktors. Z. Fisch. 15 (1/2): 45-60.

Sneed K, Allen K, Ellis JE. 1975. Fish Farming and Hydroponics. Aquaculture and Fish Farmer. 11 p. 11-18. https://doi.org/ 10.1371/journal.pone.0102662.

Sikawa DC, Yakupitiyage A. 2010. The hydroponic production of lettuce (Lactuca sativa L) by using hybrid catfish (Clarias microcephalus x C. gariepinus) pond water: Potentials and constraint. Agr. Water Manage. 97: 1317-1325. https://doi.org/ 10.1016/j.agwat.2010.03.013

Sirakov I, Velichkova K, Stoyanova S, Slavcheva-Sirakova D, Staykov Y. 2017. Comparison between two production technologies and two types of substrates in an experimental aquaponics recirculation system. Sci. Pap. Ser. E-Land Reclam. Earth Obs. Surv. Environ. Eng. 6, 98-103.

Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A. 2014. Small-scale aquaponic food production: integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper. (589), I.

Strauch SM, Wenzel LC, Bischoff A, Dellwig O, Klein J, Schüch A, Wasenitz B, Palm HW. 2018. Commercial African catfish (Clarias gariepinus) recirculating aquaculture systems: Assessment of element and energy pathways with special focus on the phosphorus cycle. Sustainability. 10(6): 1805. https://doi.org/10.3390/su10061805

Tapia ML, Caro JM. 2009. Production of lettuce seedlings (Lactuca sativa) in granular rock wool and expanded perlite for use in hydroponics. Ciencia e investigacion agrarian: revista latinoamericana de ciencias de al agricultura. 36(3): 401-410.

Toko I, Fiogbe ED, Koukpode B, Kestemont P. 2007. Rearing of African catfish (Clarias gariepinus) and vundu catfish (Heterobranchus longifilis) in traditional fish ponds (whedos): Effect of stocking density on growth, production and body composition. Aquaculture, 262(1): 65-72. https://doi.org/ 10.1016/j.aquaculture.2006.08.054

Trang NTD, Konnerup D, Brix H. 2017. Effects of recirculation rates on water quality and Oreochromis niloticus growth in aquaponics systems. Aquacultural Engineering. 78: 95-104. https://doi.org/10.1016/j.aquaeng.2017.05.002

Tyson RV. 2004. Reconciling water quality parameters impacting nitrification in aquaponics: The pH levels. Proceedings of the Florida State Horticultural Society. 117: 79-83.

Tyson RV, Simonne EH, Treadwell DD, White JM, Simonne A. 2008. Reconcilling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. HortScience 43:719-724. https://doi.org/ 10.21273/HORTSCI.43.3.719

Tyson RV, Treadwell DD, Simonne EH. 2011. Opportunities and challenges to sustainability in aquaponic systems. Horttechnology 21(1): 6-13. doi:10.21273/HORTTECH.21.1.6

Velichkova K, Sırakov I, Stoyanova S, Staykov Y. 2019. Cultivation of lettuce (Lactuca sativa L.) and rainbow trout (Onchorynchus mykiss W.) in the aquaponics recirculation system. Journal of Central European Agriculture. 20(3): 967- 973. https://doi.org/10.5513/JCEA01/20.3.2223

Wang S, Peng Y. 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11-24. https://doi.org/10.1016/j.cej.2009.10.029

Watten BJ, Busch RL. 1984. Tropical production of tilapia (Sarotherodon aurea) and tomatoes (Lycopersicon esculentum) in a small-scale recirculation water system. Aquaculture. 41:271-283. https://doi.org/10.1016/0044- 8486(84)90290-4

Wurts WA. 2003. Daily pH cycle and ammonia toxicity. World Aquaculture. 34(2): 20-21.

Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y. 2016. Effects of pH on nitrogen-based aquaponics. Bioresource Technology. 210, 81-87. https://doi.org/10.1016/j.biortech. 2015.12.079.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

First Scientific Record for Sivas Aquatic Systems Related to Alien Fish Species:Small-scaled Pacu; Piaractus mesopotamicus (Teleostei:Characidae)

Bülent ÜNVER, Durdu AKDAĞ, Saniye Müzeyyen VİCDANLI

Systematic Determination of The Ultrastructure of Local Faba Bean (Vicia faba L.) Seeds Using Light and Scanning Electron Microscopes

NİHAT YILMAZ, Handan ŞAPÇI SELAMOĞLU, Zeynep ARI, Hatice BEKCİ

The Bifunctional Catalase-Phenol Oxidase of Mycothermus Thermophilum (MtCATPO) Increases the Antioxidant Capacities of its Ortho-Diphenolic Substrates and of Green and Black Tea Extracts

Betül SÖYLER, Zümrüt Begüm ÖĞEL

The Comparison of Different Honey Bee Genotypes by Some Biochemical Parameters (Total Protein, Total RNA, Catalase and Malondialdehyde)

Adnan ÜNALAN, Ethem AKYOL

Determination of Temporary Shelter Areas by the Analytic Hierarchy Process Method: The Case of Burdur City Center, Turkey

Hüseyin Samet AŞIKKUTLU, Yasin AŞIK, LATİF GÜRKAN KAYA

Licorice Root Ethanol Extract Induces Cell Proliferation in Human Osteoblast Cells

Sema MISIR

Evaluation of Improved Faba Bean Technology in The Wider-Scale: Lesson from Stakeholders’ Participation in Wag-Lasta, Ethiopia

Ademe MİHİRETU, Adane WUBET

The Evaluation of Heavy Metal Accumulation in Whiting Fish (Merlanguis merlangus euxinus Nordmann, 1840), a Local and Economic Species of the Central Black Sea Region

Oylum BAKİ

Economic Performance of Apple Farms: A Case of Isparta and Karaman Provinces of Turkey

Alamettin BAYAV, BAHRİ KARLI

Antimicrobial Activities of Some Marine Macroalgae Species from Iskenderun Bay

Selin SAYIN