Changes in Nutrients, Energy, Antioxidant and Carotenoid Levels of Dried Tomato (Lycopersicon esculentum) Pomage Treated with Aspergillus niger Solid-State Fermentation

Tomato pomace (TP), utilized improperly is not namely causes a waste of valuable resources but also increases environmental pollution. In this study, possibilities improving nutrient composition by fermenting dry TP with Aspergillus niger was investigated for the value-added utilization of this pomace in animal feed. The TP, dried at 65°C for 8 hours with a simple layer and under a laminar airflow drying oven, was subjected to solid-state fermentation. After unfermented and fermented dry pomaces were milled in 2 mm sieve, proximate analysis and the analysis of cellulosic fractions were performed. Roughage quality indices were calculated using cellulosic fractions. Fermentation of TP with Aspergillus niger inoculant increased the amount of dry matter (82.98 vs 91.47%), crude fiber (21.71 vs 23.00%), neutral detergent fiber (29.70 vs 35.92%), acid detergent fiber (25.22 vs 26.84%), acid detergent lignin (7.91 vs 10.77%), hemicellulose (44.71 vs 90.78), crude protein (13.70 vs 21.37%), ether extract (2.82 vs 3.52%) and ash (10.57 vs 13.24%) compare to unfermented TP. Fermentation process decreased nitrogen-free extract (51.19 vs 38.86%), non-fiber carbohydrates (46.03 vs 29.47%) and quality index as relative feed value (216.9 vs 176.1) and relative forage quality (242.5 vs 195.5) and metabolizable energy (2.66 vs 2.60). Ferric reducing antioxidant power (FRAP), DPPH free radical (2,2-diphenyl-1-picrilhydrazil) and total phenolic content of TP did not increase by fermentation. Concentration of β-carotene and lycopene of TP decreased after fermentation with A niger. The results indicate that the selected strains of A. niger can be used to enrich the chemical composition of TP, except for cellulosic fractions and also carotenoids and antioxidant activity.

___

Aguilar CN, Aguilera-Carbo A, Robledo A, Ventura J, Belmares R, Martinez D, Rodríguez-Herrera R, Contreras J. 2008. Production of antioxidant nutraceuticals by solid-state cultures of pomegranate (Punica granatum) peel and creosote bush (Larrea tridentata) leaves. Food Technology and Biotechnology 46(2): 218-222.

Altop A. 2019a. Effect of solid-state fermentation on main nutritional components, some minerals, condensed tannin and phenolic compounds of olive leaves. Turkish Journal of Agriculture Food Science and Technology 7(1): 115-119.

Altop A. 2019b. The effects of diets supplemented with fermented or non-fermented cherry kernels (Prunus avium L.) on growth performance, ileal histology, caecum microflora, and some meat quality parameters in broiler chickens. European Poultry Science 260, 83 doi:10.1399/eps.

Altop A, Gungor E, Erener E. 2019. Improvement of nutritional quality of some oilseed meals through solid-state fermentation. Turkish Journal of Agriculture - Food Science and Technology 7(9): 1411-1414.

Alves AR, Beelen PMG, de Medeiros AN, Neto SG, Beelen RN. 2011. Consumo e digestibilidad do feno de sabia por caprinos e ovinos suplementados com polietilenoglico. Revista Caatinga 24: 152-157.

Amadou I, Le GW, Shi YH, Jin S. 2011. Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum Lp6. International ournal of Food Properties 14: 654-665.

Apata DF. 2011. Effect of Terminalia catappa fruit meal fermented by Aspergillus niger as replacement of maize on growth performance, nutrient digestibility, and serum biochemical profile of broiler chickens. Biotechnology Research International 907546, doi:10.4061/2011/907546.

Arda M. 2000. Basic Microbiology. Chapter 9, Medisan Publication, 45, Ankara.

Assi JA, King AJ. 2008. Manganese amendment and Pleurotus ostreatus treatment to convert tomato pomace for inclusion in poultry diets. Poultry Science 87(9): 1889-1896.

Baranska M, Schütze W, Schulz H. 2006. Determination of Lycopene and β-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR Spectroscopy. Analytical Chemistry 78(24): 8456–8461.

Beauvais A, Fontaine T, Aimanianda V, Latgé JP. 2014. Aspergillus cell wall and biofilm. Mycopathologia 178(5-6): 371-377.

Benzie IF, Szeto Y. 1999. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry 47(2): 633-636.

Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LebensmittelWissenschaft und -Technologie 28(1): 25-30.

Del Valle M, Cámara M, Torija ME. 2006. Chemical characterization of tomato pomace. Journal of the Science of Food and Agriculture 86: 1232–1236.

Demiray E. 2009. Determination of lycopene, ß-Carotene, ascorbic acid and color change kinetics of tomatoes in drying process. MSc Thesis, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, 101, Denizli.

Elibol M, Moreira A. 2005. Optimising some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Process Biochemistry 40(5): 1951-1956.

FAO, 2019. Food and Agriculture Organization. Available from: http://www.fao.org/faosta. Accessed date: 29.09.2019. Fuentes E, Carle R, Astudillo L, Guzman L, Gutierrez M,

Carrasco G & Palomo I. 2013. Antioxidant and antiplatelet activities in extracts from green and fully ripe tomato fruits and pomace from industrial tomato processing. Evidencebased Complementary and Alternative Medicine 867578. https://doi.org/10.1155/2013/867578.

Giuffrè AM, Capocasale M. 2016. Physicochemical composition of tomato seed oil for an edible use: The effect of cultivar. International Food Research Journal 23: 583–591.

Güngör E, Erener G. 2020a. Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on growth performance, carcass traits, and meat quality in broiler chickens. Poultry Science 99(1): 301-309. https://doi.org/ 10.3382/ps/pez490

Güngör E, Erener G. 2020b. Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on digestibility, intestinal morphology and caecal microflora in broiler chickens. Poultry Science 99(1): 471-478. https://doi.org/ 10.3382/ps/pez538

Güngör E, Altop A, Öztürk E, Erener G. 2017. Nutritional Changes of Sour Cherry (Prunus cerasus) Kernel Subjected to Aspergillus niger Solid-state Fermentation. Journal of Tekirdag Agricultural Faculty 6: 99-103.

Jamal P, Hashlamona A, Jaswir I, Akbar I, Nawawi WMFW. 2017. Extraction of lycopene from tomato waste using solid state fermentation. International Food Research Journal 24(Suppl): 416-421.

Jannathulla R, Dayal J S, Ambasankar K, Muralidhar M. 2018. Effect of Aspergillus niger fermented soybean meal and sunflower oil cake on growth, carcass composition and haemolymph indices in Penaeus vannamei Boone, 1931. Aquaculture 486: 1-8

Jemil N, Ayed HB, Manresa A, Nasri M, Hmidet N. 2017. Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC Microbiology 17: 144 doi 10.1186/s12866-017-1050-2.

Jeranyama P, Garcia AD. 2004. Understanding relative feed value (RFV) and relative forage quality (RFQ). Cooperative Extension Service. ExEx8149. College of Agriculture and Biological Sciences, South Dakota State Unıversıty, USDA.

Kaur D, Wani AA, Oberoi DPS, Sogi DS. 2008. Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chemistry 108: 711–718 https://doi.org/10.1016/ j.foodchem. 2007.11.002.

Kayode R, Sani A. 2008. Physicochemical and proximate composition of mango (Mangifera indica) kernel cake fermented with mono-culture of fungal isolates obtained from naturally decomposed mango kernel. Life Science Journal 5(4): 55-63.

Lawal T, Iyayi E, Adeniyi B, Adaramoye O. 2010. Biodegradation of palm kernel cake with multienzyme complexes from fungi and its feeding value for broilers. International Journal of Poultry Science 9(7): 695-701.

Lu Z, Wang J, Gao R, Ye F, Zhao G. 2019. Sustainable valorisation of tomato pomace: A comprehensive review. Trends in Food Science and Teechnology 86: 172-187. Mechmeche M, Kachouri F, Chouabi M, Ksontini H, Setti K,

Hamdi M. 2017. Optimization of extraction parameters of protein isolate from tomato seed using response surface methodology. Food Analytical Methods 10: 809–819 https://doi.org/10.1007/s12161-016-0644-x.

Moktan B, Saha J, Sarkar PK. 2008. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Food Research International 41: 586-593.

Navarro-Gonzalez I, Garcia-Valverde V, Garcia-Alonso J, Periago MJ. 2011. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Research International 44, 1528–1535 https://doi.org/10.1016/ j.foodres.2011.04.005

Nour VD, Panaite T, Ropota M, Turcu R, Trandafir I, Corbu AR. 2018. Nutritional and bioactive compounds in dried tomato processing waste, CyTA. Journal of Food 16(1): 222-229.

Okpako C, Ntui V, Osuagwu A, Obasi F. 2008. Proximate composition and cyanide content of cassava peels fermented with Aspergillus niger and Lactobacillus rhamnosus. Journal of Food Agriculture and Environment 6(2): 251-255.

Ozturk E. 2017. Performance of broilers fed with different levels of sunflower meal supplemented with or without enzymes. Indian Journal of Animal Research 51(3): 495-500 doi:10.18805/ijar.v0i0f.3799.

Pandey A. 2003. Solid-state fermentation. Biochemical Engineering Journal 13(2-3): 81-84.

Papagianni M. 2007. Advances in citric acid fermentation by Aspergillus niger biochemical aspects, membrane transport and modeling. Biotechnology Advances 25(3): 244-263.

Ranveer RC, Patil SN, Sahoo AK. 2013. Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food and Bioproducts Processing 91(4): 370-375.

Sandle T. 2016. Microbiological challenges to the pharmaceuticals and healthcare. In Pharmaceutical Microbiology, Essentials for Quality Assurance and Quality Control, Publisher: Elsevier, ISBN: 9780081000229, pp: 281-294.

Savadkoohi S, Farahnaky A. 2012. Dynamic rheological and thermal study of the heat-induced gelation of tomato seed proteins. Journal of Food Engineering 113: 479–485 https://doi.org/ 10.1016/j.jfoodeng.2012.06.010.

Shi C, He J, Yu J, Yu B, Huang Z, Mao X, Zheng P, Chen D. 2015. Solid state fermentation of rapeseed cake with Aspergillus niger for degrading. Journal of Animal Science and Biotechnology 6(13): 1-7 doi:10.1186/s40104-015-0015-2.

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture 16(3): 144-158.

Tosun R. 2017. Making the nutrient composition of apple and tomato pulp subjected to solid-phase fermentation by fungal microorganisms useful for poultry. MSC Thesis, Süleyman Demirel University, Institute of Science, Animal Science Department, 91pages, Isparta, Turkey.

Undersander D. 2003. The new forage quality index-concepts and use, World’s Forage Superbowl Contest. http://www.dfrc.ars.usda.gov/WDExpoPdfs/newRelativeFQi ndex.pdf, Accessing date: 17 March 2020.

Van Soest P, Robertson J, Lewis B. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10): 3583-359.

Verzelloni E, Tagliazucchi D, Conte A. 2007. Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chemistry 105(2): 564-571.

Xie P, Huang L, Zhang C, Zhang Y. 2016. Nutrient assessment of olive leaf residues processed by solid-state fermentation as an innovative feedstuff additive. Journal of Applied Microbiology 121(1): 28-40.

Zhang X, Zhao L, Cao F, Ahmad H, Wang G, Wang T. 2013. Effects of feeding fermented Ginkgo biloba leaves on small intestinal morphology, absorption, and immunomodulation of early lipopolysaccharide-challenged chicks. Poultry Science 92(1): 119-130.

Zuorro A, Fidaleo M, Lavecchia R. 2011. Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme and Microbial Technology 49: 567–573.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Orta Karadeniz Bölgesi Yerel ve Ekonomik Bir Tür olan Mezgit Balığındaki (Merlanguis merlangus euxinus Nordmann, 1840) Ağır Metal Birikiminin Değerlendirilmesi

Oylum Gökkurt BAKİ

Changes in Nutrients, Energy, Antioxidant and Carotenoid Levels of Dried Tomato (Lycopersicon esculentum) Pomage Treated with Aspergillus niger Solid-State Fermentation

Kerim DEMİRGÜL, ERGİN ÖZTÜRK

Antimicrobial Activities of Some Marine Macroalgae Species from Iskenderun Bay

Selin SAYIN

Farmers’ Pest Management Practices of Stored Faba Bean and their Implication to Food Security in Farta District, North West Ethiopia

Wondale ENDSHAW, Berhanu HİRUY

The Bifunctional Catalase-Phenol Oxidase of Mycothermus Thermophilum (MtCATPO) Increases the Antioxidant Capacities of its Ortho-Diphenolic Substrates and of Green and Black Tea Extracts

Betül SÖYLER, Zümrüt Begüm ÖĞEL

First Scientific Record for Sivas Aquatic Systems Related to Alien Fish Species:Small-scaled Pacu; Piaractus mesopotamicus (Teleostei:Characidae)

Bülent ÜNVER, Durdu AKDAĞ, Saniye Müzeyyen VİCDANLI

Effects of Allegations Regarding the Use of Antibiotics and Hormones in Diets on Consumer Perceptions, Attitudes and Behaviors towards Broiler Meat Consumption

Kerem KARASU, ERGİN ÖZTÜRK

Karyotypical Identification of Some Important Alfalfa (Medicago sativa L.) Lines in Turkey

Uğur ÖZKAN, Berk BENLİOĞLU

Effect of Ferrous Gluconate on Chromosomal Abnormality Index of Allium Cepa Root Tip

Nergis KAYA

Determination of the L-DOPA (L-3, 4-Dihydroxyphenylalanine) Content in Faba Bean (Vicia faba L.) Flowers and Faba Bean Flower Tea

HATİCE BOZOĞLU, Merve BEZMEN