South East Anatolia Region has a large genetic plant diversity due to its physical and different climatic charesteristics. These plants are potential sources of antioxidants that prevent oxidative stress caused by oxygen and photons. In recent years, it has become important to study the antioxidant capacity of many molecules found naturally in foods and biological systems. The reason for this is that it is believed that when the consumption of food rich in antioxidants is increased, the risk of developing different degenerative diseases will be reduced. In this study, it was aimed to measure the antoxidant capacity of Quercus infectoria, G.olivier gal seeds grown in Southeastern Anatolia. Q. infectoria gal seeds from Sanlıurfa province were used in our study. Q. infectoria gal seeds were extracted with water, ethanol and methanol and then antioxidant enzyme activities (catalase and superoxide dismutase) and malondialdehyde levels, which are indicators of oxidative stress were determined by spectrophotometric methods. It was found that the antioxidant capacity (catalase and superoxide dismutase activities) of extracts obtained from ethanol and methanol were higher and their malondialdehyde levels were statistically lower than those obtained from water. However, it was determined that there was no statistically significant difference between the antioxidant capacity and malondialdehyde levels of the extracts obtained from methanol compared to the extracts obtained from ethanol. It has been concluded that Q. infectoria gal seed has a effective antioxidant effect. In addition, it was observed that extracts obtained from ethanol and methanol have higher antioxidant capacity than extracts obtained from water.
___
Aridiru R, Arabacı G. 2013. Ciğertaze otu’nun antioksidan aktivitesinin belirlenmmesi, SAÜ. Fen Bilimleri Dergisi, 17(2): 241-246.
Beutler E. 1984. Superoxide dismutase. In Beutler E (Editor). Red Cell Metabolism. A Manual of Biomedical Methods, 83-85.
Böhner K. 1934. Geschichte der Cecidologie, Bd.I,Mittenwald (Bayern).
Camus A. 1934. Tom, I. Les chennes, Paris.
Chaudiere J, Ferrari-Iliou R. 1999. Intracellular Antioxidants: From chemical to biochemical mechanisms. Food and Chemical Toxicology, 37: 949-962.
Dicko MH, Gruppen H, Traoré AS, Voragen AGJ, van Berkel WJH. 2006. Phenolic Compounds and Related Enzymes as Determinants of Sorghum for Food Use. Biotechnology and Molecular Biology Review, 1(1): 21-38.
Fridovich I. 1972. Superoxide radical and superoxide dismutase. Accounts of Chemical Research, 5(10): 321-326.
İnal S. 1955. Meşe (Quercus) hakkında etimolojik ve tarihi etüdler. İstanbul Üniversitesi Orman Fakültesi Dergisi, 5(1): 100-111.
Kafkas E, Bozdoğan A, Burgut A, Türemiş N, Kargı S, Cabaroğlu T. 2006. Bazı Üzümsü Meyvelerde Toplam Fenol ve Antosiyanin İçerikleri. II. Ulusal Üzümsü Meyveler Sempozyumu, Tokat, Türkiye, 309-12.
Kalaycıoğlu A, Öner C. 1994. Bazı bitki ekstraktlarının antimutajenik etkilerinin Ames Salmonella test sistemi ile araştırılması. Turkish Journal Botany, 18: 117-122.
Karagözler AA, Erdağ B, Emek YÇ, Uygun DA. 2008. Antioxidant activity and proline content of leaf extracts from Dorystoechas hastata. Food Chemistry, 111: 400- 407.
Kaur G, Athar M, Alam MS. 2008. Quercus infectoria galls possess antioxidant activity and abrogates oxidative stressinduced functional alterations in murine macrophages. Chemico-Biological Interactions, 171(3): 272-282.
Kurutas EB. 2015. The İmportance Of Antioxidants Which Play The Role in Cellular Response Against Oxidative/Nitrosative Stress: Current State. Nutrition Journal, 15(1): 1-22.
Machlin LJ, Bendich A. 1987. Free radical tissue damage: protective role of antioxidant nutrients. Journal of the Federation of American Societies for Experimental Biology, 1: 441- 445.
Mohammed FS, Akgul H, Sevindik M, Khaled BMT. 2018. Phenolic content and biological activities of Rhus coriaria var. zebaria. Fresenius Environmental Bulletin, 27(8): 5694- 5702.
Mohammed FS, Karakaş M, Akgül H, Sevindik M. 2019. Medicinal properties of Allium calocephalum collected from Gara Mountain (Iraq). Fresen Environ Bull, 28(10): 7419-7426.
Mohammed FS, Şabik AE, Sevindik E, Pehlivan M, Sevindik M. 2020. Determination of Antioxidant and Oxidant Potentials of Thymbra spicata Collected from Duhok-Iraq. Turkish Journal of Agriculture-Food Science and Technology, 8(5): 1171-1173.
Ohkawa HNO. 1979. Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Annals of Biochemistry, (95): 351-358.
Özkan A, Gündüz G, Çıplak B, Fışkın K. 2000. Kimyasal mücadele uygulanmış Dociostaurus Maroccanus epidemik populasyonundan alınan örneklerde antioksidan enzim aktiviteleri. Turkish Journal of Biology, 24: 141-149.
Pehlivan M, Mohammed FS, Sevindik M, Akgul H. 2018. Antioxidant and oxidant potential of Rosa canina. Eurasian Journal of Forest Science, 6(4): 22-25.
Pokorny J. 2007. Are natural antioxidants better- and safer-than synthetic antioxidants?. European Journal of Lipid Science and Technology, 109: 629-642.
Quideau S. 2009. “Chemistry and Biology of Ellagitannins”. Hackensack, USA: World Scientific Publishing Co. Pte. Ltd.
Rice-Evans C, Miller N, Paganga G. 1997. Antioxi-dant properties of phenolic compounds. Trends In Plant Science, 2: 152-9.
Saldamlı İ. 2007. Gıda Kimyası. Hacettepe Üniversitesi Yayınları, Ankara, 463-92.
Salehi B, Gültekin-Özgüven M, Kırkın C, Özçelik B, MoraisBraga MFB, Carneiro JNP, Bezerra CF, da Silva TG, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M, Yousaf Z, Sharifi-Rad J, Muddathir AM, Devkota HP, Martorell M, Jugran AK, Martins N, Cho WC. 2019. Anacardium plants: chemical, nutritional composition and biotechnological applications. Biomolecules, 9(9): 465.
Salehi B, Gültekin-Özgüven M, Kirkin C, Özçelik B, MoraisBraga MFB, Carneiro JNP, Bezerra CF, da Silva TG, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M, Yousaf Z, Sharifi-Rad J, Muddathir AM, Devkota AP, Martorell M, Jugran AM, Cho WC, Martins N. 2020. Antioxidant, antimicrobial, and anticancer effects of anacardium plants: an ethnopharmacological perspective. Frontiers in Endocrinology, 11: 295.
Salehi B, Selamoglu Z, Sevindik M, Fahmy NM, Al-Sayed E, ElShazly M, Csupor-Löffler B, Csupor D, Yazdi SE, SharifiRad J, Arserim-Uçar DK, Arserim EH, Karazhan N, Jahani A, Dey A, Azadi H, Vakili SA, Sharopov FA, Martins N, Büsselberg D. 2020. Achillea spp.: A comprehensive review on its ethnobotany, phytochemistry, phytopharmacology and industrial applications. Cellular and Molecular Biology, 66(4): 78-103.
Sevindik M, Akgul H, Pehlivan M, Selamoglu Z. 2017. Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresen Environ Bull, 26(7): 4757-4763.
Sevindik M. 2018. Pharmacological properties of Mentha species. J Tradit Med Clin Natur, 7(2): 259.
Shrestha S, Kaushik V.S, Eshwarappa R.S, Subaramaihha R.S, Ramanna L.M, Lakkappa D.B. 2014. Pharmacognostic studies of insect gall of Quercus infectoria Olivier (Fagaceae). Asian Pac J Trop Biomed, 4(1): 35–39.
Singh RJA. 2005. Antimicrobial Activity of Some Natural Dyes. Dyes and Pigments, 66: 99- 102.
Ünver A, Arslan D, Çetinkaya Z, Özcan MM. 2008. Antimycotic activity of methanol extracts of sage (Salvia officinalis L.), Laurel (Laurus Nobilis L.) and Thyme (Thymbra spicata L.). J. Essential Oil Bearing Plants, 11: 90-95.
WHO. 2015. Connecting Global Priorities: Biodiversity And Human Health: A State Of Knowledge Review, ISBN 9789241508537.
Yigit NO, Dulluc A, Koca SB, Didinen BI. 2013. Effects of canola meal use instead of soybean meal in mirror carp (Cyprinus carpio, L. 1758) diet on growth and body composition. Tarim Bilimleri Dergisi, 19 (2): 140-147.