Coğrafi İşaretli Iğdır Kayısısı’nda (Prunus armeniaca cv. Şalak) Çeşitli DNA Barkod Bölgelerinin İncelenmesi

Ticareti yapılan işlenmiş veya işlenmemiş gıda ürünlerinin orijinalliğinin belirlenmesi ve gıda aldatmacalarının belirlenmesinde modern moleküler biyoloji yöntemleri hassas ve kesin sonuç verebilmektedir. Özellikle yüksek ticari değeri olan gıda ürünlerinin, daha ucuz maliyetli ürünler veya katkı maddeleri ile karıştırılması, insan sağlığını tehdit edebilir veya tüketicinin aldatılmasına sebep olabilir.Bu çalışmada coğrafi işarete sahip Iğdır Kayısısı’nın (Prunus armeniacacv. Şalak) beş farklı DNA barkodu (ITS, LEAFY, matK, rbcL ve ycf1) uygun primer çiftleri ile çoğaltılmış ve Sanger dizileme ile oluşturulmuştur. Bu barkodlar GenBank veritabanına aktarılmış ve kayısı tür ve çeşitlerini nasıl ayırt edebildiği incelenmiştir. Elde ettiğimiz sonuçlara göre çekirdek genomu kökenli ITS ve LEAFY barkodları kayısı tür ve çeşitlerini diğer plastid kökenli barkodlara göre daha iyi bir şekilde ayırt etmiştir. Bu nedenle Prunuscinsi içerisindeki türlerin ve kayısı çeşitlerinin moleküler tanılamalarında ITS barkod bölgesinin kullanılmasını tavsiye etmekteyiz.

Analysis of Various DNA Barcodes on the Turkish Protected Designation of Origin Apricot “Iğdır Kayısısı” (Prunus armeniacacv. Şalak)

Identifying the originality and detecting the authentication of the processed and unprocessed commercial food products ensure food safety. Food adulteration of food products with high commercial value by cheap additives could threaten human health. In this study, we generated and tested five DNA barcodes (ITS, LEAFY, matK, rbcL, ycf1) of the Turkish Protected Designation of Origin Apricot “Iğdır Kayısısı” (Prunus armeniacacv. Şalak) with related primer pairs. The generated barcodes were deposited on the GenBank database. The results showed that nuclear originated ITS and LEAFY barcodes discriminated the Prunusspecies and cultivars better than the plastidial barcodes. Due to plenty of ITS barcodes on the databases, and good results in our study we recommend using ITS to identify Prunusspecies and cultivars.

___

  • Aguilar JF, Rossello JA, Feliner, GN. 1999. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Molecular Ecology 8: 1341–1346
  • Altıkat S, Temiz Ş. 2019. Iğdır İli Kayısı Çeşitlerinin Fiziko-Mekanik ve Bazı Kimyasal Özellikleri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (3), 373–381. doi: 10.29133/yyutbd.521570
  • Anonymous, 2007. http://sgb.tarim.gov.tr/Proje_Yonetimi/Master_planlari/masterplan/masterplan.htm. [Accessed 30 March 2020]
  • Batnini MA, Bourguiba H, Trifi-Farah N, Krichen L. 2019. Molecular diversity and phylogeny of Tunisian Prunus armeniaca L. by evaluating three candidate barcodes of the chloroplast genome. Scientia Horticulturae (Amsterdam) 245:99–106. https://doi.org/10.1016/j.scienta.2018.09.071
  • CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences U.S.A. 106: 12794–12797.
  • Cheng T, Xu C, Lei L, et al. 2016. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources 16:138–149. https://doi.org/10.1111/1755-0998.12438
  • Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, Cheng T, Guo J, and Zhou S. 2015. ycf1, the most promising plastid DNA barcode of land plants. Scientific Reports, 5(1): 8348. https://doi.org/10.1038/srep08348
  • Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 15–87. https://doi.org/10.2307/4119796
  • Frohlich MW, Meyerowitz EM. 1997. The Search for Flower Homeotic Gene Homologs in Basal Angiosperms and Gnetales: A Potential New Source of Data on the Evolutionary Origin of Flowers. International Journal of Plant Sciences 158:S131–S142
  • Frohlich MW, Parker DS. 2000. The Mostly Male Theory of Flower Evolutionary Origins: From Genes to Fossils. Systematic Botany 25:155–170
  • Gulyás G, Sramkó G, Molnár VA, Rudnóy S, Illyés Z, Balázs T, Bratek Z. 2005. Nuclear ribosomal DNA ITS paralogs as evidence of recent interspecific hybridization in the genus Ophrys(Orchidaceae). Acta Biologica Cracoviensia Series Botanica, 47, 61–67.
  • Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K. 1994. rbcLgene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proceedings of the National Academy of Sciences, 91(12): 5730–5734. https://doi.org/10.1073/pnas.91.12.5730
  • Hilu K, Liang H. 1997. The matKGene: Sequence Variation and Application in Plant Systematics. American Journal of Botany, 84: 830–839.
  • Hollingsworth PM, Forrest LL, Spouge J.L, Hajibabaei M, Ratnasingham S, vander Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim K-J, Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, ... Little DP. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31): 12794–12797. https://doi.org/10.1073/pnas.0905845106
  • Hollingsworth PM, Graham SW, and Little DP. 2011. Choosing and Using a Plant DNA Barcode. PLoS ONE, 6(5): e19254. https://doi.org/10.1371/journal.pone.0019254
  • Hürkan K. 2017. Karasal bitkilerde DNA barkodlama: Bazı DNA barkod bölgelerinin incelenmesi. International Journal of Innovative Approaches in Science Research, 1(1): 57–67. https://doi.org/10.29329/ijiasr.2017.99.6
  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  • Kibar H, Kibar B, Sürmen M. 2014. Sicaklık ve Yağış Değişiminin Iğdır İlinde Bitkisel Ürün Deseni Üzerine Etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 11(1): 11-24. Retrieved from https://dergipark.org.tr/en/pub/aduziraat/issue/26419/278139
  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. 2005. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102(23): 8369–8374. http://www.pnas.org/content/102/23/8369.abstract
  • Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. 2015. Plant DNA barcoding: from gene to genome. Biological Reviews, 90(1): 157–166. https://doi.org/10.1111/brv.12104
  • Martelo-Vidal, MJ, Vázquez M. 2016. Advances in ultraviolet and visible light spectroscopy for food authenticity testing. In Advances in Food Authenticity Testing. https://doi.org/10.1016/B978-0-08-100220-9.00003-5
  • Min XJ, Hickey DA. 2007. BARCODING: Assessing the effect of varying sequence length on DNA barcoding of fungi. Molecular Ecology Notes, 7(3): 365–373. https://doi.org/10.1111/j.1471-8286.2007.01698.x
  • Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 -Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE, 5(3):e9490. doi:10.1371/journal.pone.0009490.
  • Sramko G, Attila MV, Hawkins JA, Bateman RM. 2014. Molecular phylogeny and evolutionary history of the Eurasiatic orchid genus Himantoglossum s.l.(Orchidaceae). Annals of Botany, 114(8): 1609–1626. https://doi.org/10.1093/aob/mcu179
  • White TJ, Bruns TD, Lee S Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press.
  • Yu J, Xue J-H, Zhou S-L. 2011. New universal matK primers for DNA barcoding angiosperms. Journal of Systematics and Evolution, 49(3): 176–181. https://doi.org/10.1111/j.1759-6831.2011.00134.x
  • Yu LX, Yan B. 2013. Development of universal primers for isolating fragments of the LEAFY gene. Genetics and Molecular Research, 12(2): 1777-1780.
  • Wolf PG, Der JP, Duffy AM, Davidson JB, Grusz AL, Pryer KM. 2011. The evolution of chloroplast genes and genomes in ferns. Plant Molecular Biology, 76(3-5): 251-261.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Adıyaman İlinde Organik Üzüm Üretimi ve Üretici Yapısı; Besni İlçesi Örneği

Aybüke KAYA, Songül BAY

Genetic Variability of Maize (Zea mays L.) Genotypes on Some Yield and Yield Components at Haramaya, Eastern Ethiopia

Mekuannet BELAY, Degefa GEBISSA

Proximate Composition of Freshwater Mussels (Unio Pictorum, Linnaeus 1758) in Karasustream, Sinop

Mehmet Anıl KESKİNBALTA, Meryem Yeşim ÇELİK

Investigation of Grain Characters of Some Bean Varietiesin Eastern Anatolian Conditions

Leyla İDİKUT, Tolga KARABACAK

In Turkey, The Relationship of Agricultural Sector and Economic Variables: Panel Cointegration Analysis

Ayşe Esra PEKER

Economic Performance of Rainbow Trout Farming in Turkey

MEHMET AYDOĞAN, Osman UYSAL, Serhan CANDEMİR, Yunus Emre TERZİ, Rahmi TAŞCI, Tuba BEŞEN, Fatma Pınar ÖZTÜRK, Meltem EMRE, Önder ERALP, ORHAN GÜNDÜZ, Vedat CEYHAN

Coğrafi İşaretli Iğdır Kayısısı’nda (Prunus armeniaca cv. Şalak) Çeşitli DNA Barkod Bölgelerinin İncelenmesi

Kaan HÜRKAN

Pollen Characterization and Physicochemical Analysis of Six Nigerian Honey Samples; Test for Authenticity

Ernest Uzodimma DURUGBO, Gabriel Gbenga DARAMOLA, Desmond Uchenna ABAZUH, M Mba Obasi ODIM

Farklı Dönemlerde Verilen Organik Sıvı Gübrenin Makarnalık Buğdayda (Triticum durum L.) Tane Verimi, Verim Komponentleri ve Kaliteye Etkisi

Arzu MUTLU, Timuçin TAŞ, Ali Beyhan UÇAK

The Effect of Organic Liquid Fertilizer Given in Different Periods on Grain Yield, Yield Components and Quality in Durum Wheat (Triticum durum L.)

Arzu MUTLU, Timuçin TAŞ, Ali Beyhan UÇAK