Classification of Some Fruits using Image Processing and Machine Learning
Classification of Some Fruits using Image Processing and Machine Learning
In this study, an image processing algorithm and classification unit were developed to classify the fruits according to their size and color characteristics. For this purpose, a total of 300 fruits (50 fruit samples from each of the Starkrimson Delicious and Golden Delicious apple varieties, Washington Navel and Valencia Midknight orange varieties, Ekmek and Eşme quince varieties) were used in the experiments. The size and color values measured with a caliper and a spectrophotometer were entered in the developed image processing algorithm to determine the success rates of classifying the fruits. The integration of image processing algorithm with the classification unit classified 88%, 100%, 96%, 82%, 86%, respectively. On the other hand, the size and color values read in fruits with the image processing algorithm were evaluated using predictive techniques used in data mining. For this purpose, K Nearest Neighbor (KNN), Decision Tree (DT), Naive Bayes classification and Multilayer Perceptron Neural Network (MLP) algorithms were used. Algorithms were run with 10- fold cross validation method. In the training of artificial classifiers, the success was 93.6% for KNN, 90.3% for DT, 88.3% for Naive Bayes, 92.6% for MLP and 94.3% for RF.
___
- Al-Shekaili NH, Manickavasagan A, Al-Mezeini NK, Rahman MS, Guizani N. 2016. Computer vision technique to classify dates based on hardness. Journal of Agricultural and Marine Sciences Vol. 22 (1): 36-41. Anonymous 2007a. Apple Standard. TS 100. Turkish Standards Institution, Ankara/Turkey.
- Anonymous 2007b. Citrus Standard. TS 34. Turkish Standards Institution, Ankara/Turkey. Anonymous 2007c. Quince Standard. TS 1817. Turkish Standards Institution, Ankara/Turkey.
- Ataş M. 2016. Extraction of robust features from Siirt pistachio images for pistachio sorting system. Dicle University Journal of Engineering, 7(1): 93-102.
- Bul E, Gelen G, Altun H. 2005. Görüntü İşlemeye Dayalı Tarımsal Ürün Sınıflandırma. 11. Ulusal Elektrik- Elektronik- Bilgisayar Mühendisliği Kongresi, 22-25 Eylül 2005, Şişli-İstanbul. (In Turkish).
- Çalış K, Gazdağı O, Yıldız O. 2013. Automatic Detection of Advertising Email Using Text Mining. International Journal of Informatics Technologies, 6(1): 1-7.
- Er O, Cetişli B, Sofu MM, Kayacan C. 2013. Real-Time Automatic Apple Classification. Süleyman Demirel University Journal of Natural and Applied Science, 17(2), 31- 38, 2013.
- Ishikawa T, Hayashi A, Nagamatsu S, Kyutoku Y, Dan I, Wada T, Oku K, Saeki Y, Uto T, Tanabata T, Isobe S, Kochi1 N. 2018. Classifıcation of Strawberry Fruit Shape by Machine Learning. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42(2).
- Jhawar J. 2016. Orange Sorting by Applying Pattern Recognition on Colour Image. Procedia Computer Science 78 (2016) 691 – 697.
- Kim DG, Burks TF, Qin J, Bulanon DM. 2009. Classification of grapefruit peel diseases using color texture feature analysis. Int J Agric & Biol Eng, Vol. 2 No.3, 41-50p.
- Koklu, Murat; Ozkan, Ilker A. 2020. Multiclass classification of dry beans using computer vision and machine learning techniques. Computers and Electronics in Agriculture, 174(), 105507–. doi: 10.1016/j.compag.2020.105507.
- Köse İ. 2018. Veri Madenciliği Teori Uygulama ve Felsefesi. Papatya Yayıncılık Eğitim, 280 s., İstanbul/Turkey. (In Turkish).
- Küçükönder H, Vursavuş KK, Üçkardeş F. 2015. Determining The Effect of Some Mechanical Properties on Color Maturity of Tomato With K-Star, Random Forest and Decision Tree (C4.5) Classification Algorithms. Turkish Journal of Agriculture-Food Science and Technology, 3(5): 300-306, DOI:
- Kurtulmuş F, Lee WS, Vardar A. 2014. Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network. Precision agriculture, 15(1), 57-79. DOI:https://doi.org/ 10.1007/ s11119-013-9323-8.
- Li L, Peng, Y., Li, Y., Liu, Y. 2019. A nondestructive on-line detection system of apple internal and external parameters based on optical technique. An ASABE Meeting Presentation, DOI: https://doi.org/10.13031/aim.201900783.
- Naik S, Patel B (2017). Machine vision based fruit classification and grading-a review. International Journal of Computer Applications, 170(9), 22-34.
- Örnek, MN. 2014. Havuç Sınıflandırmada Gerçek Zamanlı Görüntü İşleme Makinası Tasarımı ve Bazı Mekanik Sınıflandırma Makinaları ile Boylama Etkinliklerinin Karşılaştırılması. Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Tarım Makinaları Anabilim Dalı, Konya.
- Ouni S, Zagrouba E, Chambah M, Herbin M. 2008. A New Generic Colour Full Reference Metric. ISIVC 2008.
- Pezikoglu F, Ergun ME, & Erkal S. 2004. The situation of modern retailers in fresh fruit and vegetable marketing channel. Journal of Ataturk Central Horticultural Research Institute (Turkey).
- Sabancı K, Ünlerşen MF, Dilay Y. 2016. Determination Using Image Processing Techniques the Classification Parameters of Apple Varieties Grown in the Karaman Region. Journal of Agricultural Machinery Science, 12 (2), 133-139.
- Şeker ŞE, Erdoğan D. 2018. KNIME İle Uçtan Uca Veri Bilimi. 1. Basım, 440 s., Demet Erdoğan Yayınevi. (In Turkish).
- Silahtaroğlu G. 2016. Veri Madenciliği Kavram ve Algoritmaları. 3. Basım, 304 s., Papatya Yayıncılık, İstanbul. (In Turkish).
- Singh V, Hedayetullah M, Zaman P, Meher J. 2014. Postharvest technology of fruits and vegetables: An overview. Journal of Postharvest Technology, 2(2), 124-135.
- Solak S, Altınışık U. 2017. Detection and classification of hazelnut fruit by using image processing techniques and clustering methods. SAKARYA UNIVERSITY JOURNAL OF SCIENCE, Doi: 10.16984/saufenbilder.303850 22 (1), 56-65.
- Sungur C, Özkan H. 2015. A real time quality control application for animal production by image processing. Journal of the Science of Food and Agriculture, 95(14), 2850-2857.
- Tonguç G. 2007. Fruit Classification Using Image Process Techniques. M.Sc. Thesis, Süleyman Demirel University Graduate School of Applied and Natural Sciences Machine Education Department, Isparta, Turkey.
- Yabanova İ, Yumurtacı M. 2018. Classification of Dynamic Egg Weight Using Support Vector Machine. Journal of the Faculty of Engineering and Architecture of Gazi University 33:2 (2018) 393-402.