Bitki Mikrop Etkileşiminin Sekonder Metabolitler Üzerindeki Etkisi

Bitkilerde ve üzerinde yaşayan mikroplar (bitki mikrobiyomu) bitki sağlığı için kritik öneme sahiptir ve besin alımını kolaylaştırarak, bitki hormon seviyelerini düzenleyerek ve patojen saldırısına karşı koymaya yardımcı olarak etkilerini gösterirler. Bitkiler karmaşık mikrobiyomlarla ilişkili meta organizmalardır. Bitki yüzeylerinde (epifitler) veya bitki dokuları (endofitler) içinde bulunan mikroorganizmaların çoğu, herhangi bir bitki hastalığına neden olmaz, ancak genellikle konakçı bitkilerinin besin tedarikine önemli ölçüde katkıda bulunur. Ayrıca bitki mikrop etkileşimi sekonder metabolit miktarında değişimlere neden olur. Bu derlemede, bitki sekonder metabolit miktarını artıran bitki ve kökle ilişkili mikrop (Rizosfer) arasındaki etkileşimine odaklanarak bu fenomeni destekleyen mekanizmalar hakkında anlayışımızı geliştirecek detaylı bilgiler verilmektedir.

Effect of The Plant- Microbe Interaction on Secondary Metabolites

The microbes that live in and on plants (the plant microbiome) are critical for plant health and exert their influence by facilitating the nutrient acquisition, regulating plant hormone levels, and helping to withstand pathogen attack. Plants are meta-organisms that are associated with complex microbiomes. The majority of the microorgansims including epiphytes and endophytes generally play a significant role in providing essential nutrients to the plants where they live. In addition, plant microbe interaction affects the content of secondary metabolites and their derivatives in the host plant. In this review article we summarizes the interaction of the plant and microbe interaction especially the microorganisms of the rhizosphere and their effect on the secondary metabolites level in plants. The current knowledge of the plant- microbe interaction at molecular level are also being reviewed in brief.

___

  • Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435 (7043): 824-827. doi:10.1038/nature03608
  • Alvarez MA. 2014. Plant Biotechnology for Health From Secondary Metabolites to Molecular Farming. Springer International Publishing, ISBN 978-3-319-05770-5.
  • Ambros PF, Matzke AJM. Matzke MA. 1986. Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. The EMBO Journal, 5 (9): 2073-2077. PMID: 16453703.
  • Banchio E. Bogino PC. Santoro M. Torres L. Zygadlo J, Giordano W. 2010. Systemic induction of monoterpene biosynthesis in origanum x majoricum by soil bacteria. Journal Agriculture Food Chemical, 58(1): 650–654. DOI: https://doi.org/ 10.1021/jf9030629
  • Banchio E, Xie X, Zhang H, Paré P. W. 2009. Soil bacteria elevate essential oil accumulation and emissions in sweet basil. Journal Agriculture Food Chemical, 57(2): 653–657. doi: 10.1021/jf8020305
  • Bartwal A, Mall R, Lohani P, Guru SK, Arora S. 2012. Role of Secondary Metabolites and Brassinosteroids in Plant Defense Against Environmental Stresses. Journal of Plant Growth Regulation, 32(1): 216-232. doi: 10.1007/s00344-012-9272-x
  • Benedetto A, Magurno F, Bonfante P, Lanfranco L. 2005. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza, 15(8): 620–627. doi: 10.1007/s00572- 005-0006-9
  • Berendsen RL, Pieterse CM, Bakker PA. 2012. The rhizosphere microbiome and plant health. Trends in plant science, 17(8): 478-486. doi: 10.1016/j.tplants.2012.04.001
  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B. 2013. Biocontrol and osmoprotection for plants under salinated conditions. Molecular microbial ecology of the rhizosphere, 1: 561-573.
  • Bonkowski M, Villenave C, Griffiths B. 2009. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil, 321(1- 2) 213-233. doi: 10.1007/s11104-009-0013-2
  • Bourgaud F, Gravot A, Milesi S, Gontier E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science, 161(5): 839-851. DOI: https://doi.org/10.1016/ S0168-9452(01)00490-3
  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A. 2017. Ecology and genomic insights into plantpathogenic and plant-nonpathogenic endophytes. Annual Review of Phytopathology, 55: 61-83. DOI: https://doi.org/ 10.1146/annurev-phyto-080516-035641
  • Buée M, Murat C, Frey-Klett P, Martin F. 2010. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environmental Microbiology Reports, 2(2): 281-288. doi: 10.1111/j.1758- 2229.2009.00117.x
  • Caris C, Hördt W, Hawkins HJ, Römheld V, George E. 1998. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza, 8(1): 35–39.
  • Claire Horner‐Devine MC, Leibold MA, Smith VH, Bohannan BJM. 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecology Letters, 6(7): 613-622. DOI: https://doi.org/10.1046/j.1461-0248.2003.00472.x
  • Contreras-Cornejo, HA, Macías-Rodríguez L, López-Bucio J. 2015. Fungal biomolecules in plant growth promotion. John Wiley Online Library. ISBN 9781118958308
  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg, G, Smalla K. 2006. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS microbiology ecology, 56(2): 236- 249.doi: 10.1111/j.1574-6941.2005.00026.x
  • Çelik E, Çelik GY. 2007. Bitki uçucu yağlarının antimikrobiyal özellikleri. Orlab On-Line Mikrobiyoloji Dergisi, 5(2): 1-6.
  • de Santi Ferrara FI, Oliveira ZM, Gonzales, HHS, Floh EIS,Barbosa, HR. 2012. Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil, 353(1-2): 409–417. doi:10.1007/s11104-011-1042-1
  • DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK. 2009. Selective progressive response of soil microbial community to wild oat roots. ISME Journal, 3(2): 168-178. doi: 10.1038/ismej.2008.103
  • Dias ACF, Hoogwout EF, Silva MDCP, Salles JF, van Overbeek LS, van Elsas JD. 2012. Potato cultivar type affects the structure of ammonia oxidizer communities in field soil under potato beyond the rhizosphere. Soil Biology and Biochemistry, 50: 85-95. DOI: https://doi.org/10.1016/ j.soilbio.2012.03.006
  • Egamberdieva, D, Kucharova Z. 2009. Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology Fertiliters Soils, 45 (6): 561–573. DOI: https://doi.org/10.1007/s00374-009-0366-y
  • Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G. 2017. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Frontiers in Microbiology, DOI: https://doi.org/10.3389/fmicb.2017.00199
  • Engels B, Dahm P, Jennewein S. 2008. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metabolic Engineering, 10(3-4): 201-206. doi: 10.1016/j.ymben.2008.03.001
  • Etesami, H, Alikhani HA, Hosseini HM. 2015. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX, 2: 72–78. doi: 10.1016/j.mex.2015.02.008
  • Faydaoğlu E, Sürücüoğlu M. 2013. Tıbbi ve aromatik bitkilerin antimikrobiyal, antioksidan aktiviteleri ve kullanım olanakları. Erzincan üniversitesi fen bilimleri enstitüsü dergisi, 6(2): 233-265.
  • Flores, HE, Vivancı, JM, Loyola-Vargas, MV. 1999. ‘Radicle’ viohemistry: the biology of root-specific metabolism. Trends in Plant Science, 4(6): 220-226. doi: 10.1016/s1360- 1385(99)01411-9.
  • Gomes NCM, Heuer H, Schönfeld J, Costa R, Mendonça-Hagler L, Smalla K. 2001. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant and Soil, 232(1–2): 167-180.
  • Gutiérrez‐Mañero FJ, Ramos‐Solano B, Probanza AN, Mehouachi JR, Tadeo F, Talon, M. 2001. The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111(2): 206–211. DOI: https://doi.org/10.1034/j.1399-3054.2001.1110211.x
  • Hacquard S. 2016. Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytologist, 209(2): 454-457. DOI: https://doi.org/10.1111/nph.13760
  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3): 293-320. doi: 10.1128/MMBR.00050-14
  • Harrison MJ, Buuren ML. 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378:626– 629. doi: 10.1038/378626a0
  • Hashem A, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Plant Sciences, 7:1089. DOI: https://doi.org/10.3389/fmicb.2016.01089
  • Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ. 2001. Large‐scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411: 789-792. doi: 10.1038/35081058
  • Hunter MD, Linnen CR, Reynolds BC. 2003. Effects of endemic densities of canopy herbivores on nutrient dynamics along a gradient in elevation in the southern Appalachians. Pedobiologia, 47(3): 231-244. DOI: https://doi.org/10.1078/ 0031-4056-00187
  • Jennewein S, Rithner CD, Williams RM, Croteau RB. 2001. Taxol biosynthesis: taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proceedings of the National Academy of Sciences, 98(24): 13595-13600. DOI: https://doi.org/10.1073/pnas.251539398
  • Johansson JF, Paul LR, Finlay RD. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecology, 48:1–13. doi: 10.1016/j.femsec.2003.11.012
  • Kara N, Baydar H. 2013. Determination of lavender and lavandın cultivars (lavandula sp.) containing high quality essential oil in Isparta, Turkey. Turk Journal of Field Crops, 18(1): 58-65.
  • Karuppusamy SA. 2009. review on trends in production of secondary metabolites from higher plants by in vitro tissue organ and cell culture. Journal of Medical Plants Research, 3:1222-1239. doi: 10.5897/JMPR
  • Kossel A. 1891. Über die chemiche Zusammensensetzung der Zelle. Archiv für physiologie, 4: 181-186.
  • Kourtev PS, Ehrenfeld JG, Häggblom M. 2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83: 3152-3166. DOI: https://doi.org/ 10.1890/0012-9658(2002)083[3152:EPSATM]2.0.CO;2
  • Kowalchuk GA, Stephen JR. 2001. Ammonia‐oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 55: 485-529. DOI: https://doi.org/ 10.1146/annurev.micro.55.1.485
  • Kredics L, Chen L, Kedves O, Büchner R, Hatvani L, Allaga H, Nagy VD, Khaled JM, Alharbi NS, Vágvölgyi C. 2018. Molecular tools for monitoring Trichoderma in agricultural environments. Frontiers in Microbiology, DOI: https://doi.org/10.3389/fmicb.2018.01599
  • Lakshmanan V, Castaneda R, Rudrappa T, Bais HP. 2013. Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta, 238(4): 657-668. doi: 10.1007/s00425- 013-1920-2.
  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 82: 1016-1045. DOI: https://doi.org/10.1139/b04-060
  • Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y. 2017. Let the core microbiota be functional. Trends in Plant Science, 22(7): 583-595. doi: 10.1016/j.tplants.2017.04.008
  • Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD. 2013. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 197: 617–630. doi: 10.1111/nph.12011
  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ. 2001. A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant-Microbe Interactions Journal, 14: 1140– 1148. doi: 10.1094/MPMI.2001.14.10.1140. DOI:
  • McNear Jr, DH. 2013. The rhizosphere-roots, soil and everything in between. Nature Education Knowledge, 4(3):1.
  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas P. 2017. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in Plant Science, 8: 172. DOI: https://doi.org/ 10.3389/fpls.2017.00172
  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033): 1097–1100. doi: 10.1126/science. 1203980
  • Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5): 634–663. DOI: https://doi.org/10.1111/1574-6976.12028
  • Muller DB, Voge C, Bai Y, Vorholt JA. 2016. The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics, 50: 211–234. DOI:https://doi.org/ 10.1146/annurev-genet-120215-034952
  • Olsson PA, Burleigh SH, Aarle IM. 2005. The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytologist, 168(3): 677–686. DOI: https://doi.org/10.1111/j.1469- 8137.2005.01532.x
  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 110(16): 6548-6553. doi: 10.1073/pnas.1302837110
  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11(11): 789-799. doi: 10.1038/nrmicro3109
  • Piccolic P, Travaglia C, Cohen A, Sosa L, Cornejo P, Masuelli R, Bottini R. 2011. An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemicallydefined culture medium. Plant Growth Regulation, 64(2): 207–210. doi: 10.1007/s10725-010-9536-z
  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T. 2015. Roots shaping their microbiome: global hotspots for microbial activity. Annual review of phytopathology, 53: 403-424. DOI: https://doi.org/10.1146/annurev-phyto-082712-102342
  • Rillig MC Mummey DL. 2006. Mycorrhizas and soil structure. New Phytologist, 171(1): 41–53. DOI: https://doi.org/ 10.1111/j.1469-8137.2006.01750.x
  • Schittko C, Wurst S. 2014. Above- and belowground effects of plant-soil feedback from exotic Solidago canadensis on native' Tanacetum vulgare. Biological Invasions, 16(7): 1465-1479. doi: 10.1007/s10530-013-0584-y
  • Schweiger R, Baier MC, Persicke M, Müller C. 2014. High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Nature Communications, 5: 1-11. doi: 10.1038/ncomms4886
  • Sefidkon F, Abbasi K, Khaniki GB. 2006. Influence of Drying and Extraction Methods on Yield and Chemical Composition of the Essential Oil of Satureja hortensis. Food Chemistry, 99: 19-23. doi: 10.1016/j.foodchem.2005.07.026
  • Sharma S, Aneja MK, Mayer J, Munch JC, Schloter M. 2005. Characterization of bacterial community structure in rhizosphere soil of grain legumes. Microbial Ecology, 49(3): 407-415. doi: 10.1007/s00248-004-0041-7
  • Sieverding E. 1991. Vesicular-Arbuscular Mycorrhizae Management in Tropical Agrosystems. Eschborn press. ISBN 3-88085-462-9
  • Sikes BA, Powell JR, Rillig MC. 2010. Deciphering the relative contributions of multiple functions within plant–microbe symbioses. Ecology, 91: 1591-1597. DOI: https://doi.org/10.1890/09-1858.1
  • Singh S, Pandey SS, Shanker K, Kalra A. 2020. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots. Journal of Applied Microbiology, 128(4): 1128-1142. doi: 10.1111/jam.14546
  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, Oct;67(10): 4742-4751. doi: 10.1128/aem.67.10.4742- 4751.2001
  • Smith SE, Read, DJ. 1997. Mycorrhizal Symbiosis. Academic Press. ISBN 9780126528404
  • Smith SE, Read D. 2008. Mycorrhizal symbiosis. Academic Press. ISBN 0123705266
  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK. 2016. Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Applied Biochemistry and Biotechnology, 180: 872–882. DOI: 10.1007/s12010-016-2139-z
  • Sprent JI, Parsons R. 2000. Nitrogen fixation in legume and non‐ legume trees. Field Crops Research, 65: 183-196. DOI: https://doi.org/10.1016/S0378-4290(99)00086-6
  • Strange RN, Scott PR. 2005. Plant disease: a threat to global food security. Annual review of phytopathology, 43(1): 83-116. DOI: https://doi.org/10.1146/annurev.phyto.43.113004.133839
  • Thomas J, Kim HR, Rahmatallah Y, Wiggins G, Yang Q, Singh R, Glazko G, Mukherjee A. 2019. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria. Azospirillum brasilense, PloS ONE, 14(5): 1-19. doi: 10.1371/journal.pone.0217309
  • Tiedje, JM. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of anaerobic microorganisms, 717: 179-244.
  • Tsavkelova EA, Cherdyntseva TA, Klimova SY, Shestakov AI, Botina SG, Netrusov AI. 2007. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Archives of Microbiology, 188: 655–664. doi: 10.1007/s00203-007-0286-x
  • Uroz S, Buée M, Murat C, Frey-Klett P, Martin F. 2010. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environmental Microbiology Reports, 2(2): 281-288. doi: 10.1111/j.1758-2229.2009.00117.x
  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM. 2000. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11: 296- 310. DOI: 10.1111/j.1461-0248.2007.01139.x
  • Vandenkoornhuyse P, Mahé S, Ineson P, Staddon P, Ostle N, Cliquet JB, Francez AJ, Fitter AH, Young JPW. 2007. Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proceedings of the National Academy of Sciences of the United States of America, 104(43): 16970–16975. doi: 10.1073/pnas.0705902104
  • Vorholt JA. 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12): 828-840. doi: 10.1038/ nrmicro2910
  • Wang F, Jiang R, Kertesz MA, Zhang F, Feng G. 2013. Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.). Soil Biology and Biochemistry, 65: 69–74. DOI: https://doi.org/10.1007/ s40009-017-0582-1
  • Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority, Proceedings of the National Academy of Sciences, 95: 6578–6583. doi: 10.1038/nrmicro2910.
  • Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR. 2016. Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLOS ONE, 11(7): 1- 19. DOI: https://doi.org/10.1371/journal.pone.0159007
  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora, DK. 2012. Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regulation, 68: 411– 420. doi 10.1007/s10725-012-9730-2
  • Yıldırım MU, Bulduk İ, Sarıhan EO, Küçük G, Cin T, İzmirli A. 2019a. Effects of Different Doses of Plant Growth Regulators on Some Characteristics of Summer Snowflakes (Leucojum aestivum L.). Turkish Journal of Agriculture - Food Science and Technology, 7(2): 163-168, 2019. DOI: https://doi.org/ 10.24925/turjaf.v7isp2.163-168.3191
  • Yıldırım MU, Sarıhan EO, Kul H, Khawar KM. 2019b. Diurnal and nocturnal variability of essential oil content and components of Lavandula angustifolia Mill. (Lavender). Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 24 (3): 268-278. ISSN: 2667-7733.
  • Zhang P, Zhou PP, Yu LJ. 2009. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Current Microbiology, 59: 227-232. doi: 10.1007/ s00284-008-9270-1
  • Zhang Y, Lubberstedt T. Xu ML. 2013. The genetic and molecular basis of plant resistance to pathogens. J. Genet. Genomics, 40: 23-35. doi: 10.1016/j.jgg.2012.11.003
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Effect of Irrigation and Fertigation Levels on Cabbage (Brassicaceae Oleracea var. capitata L. Grandslam F1)

Serhat AYAS

Fertility of Uncontrolled Village Flock Eggs and Comparison of Quality Traits of Table-Eggs Produced in Different Production Systems

Musa SARICA, Kadir ERENSOY, Ayşe İpek ÖZSOY

Probiyotik Lactobacillus Süpernatantlarının Streptococcus Mutans'a Karşı İnhibitör Etkisi ve Biyofilm Oluşumunu Önleme

Tuğba DEMİR, Hakan DEMİR

A Model for Determining the Interactions Between some Honey Bee (Apis mellifera L.) Genotypes and Different Grooming Times in Terms of Aggression

SAMET HASAN ABACI, SELİM BIYIK

Twenty Minutes of Ultraviolet-B Light Improved Quality of Cherry Fruits (Prunus avium L. cv 0900 Ziraat) During Storage

Tuğçe ŞAHİN, REZZAN KASIM, M. Ufuk KASIM

Antioxidant Activity and Element Content of Suillus collinitus

Celal BAL

Farklı Dozlarda Fosfor Uygulamasının Şeker pancarı (Beta Vulgaris L.) Bitkisinin Verimine ve Besin Elementleri Alımına Etkisi

Ahmet DEMİRBAŞ

Su Sertliğinin Filtre Kahvenin Uçucu Bileşenlerine ve Lezzetine Etkisi

Ceyda DADALI, YEŞİM ELMACI

Effect of Milk and Hydro-priming on Seed Germination Characteristics of Bitter Gourd (Momordica charantia L.)

Sadiqur RAHMAN, Istiak AHMED, Suman BISWAS, Monjur MORSHED, Parimal Chandra SARKER, Arafat HOSSAIN, Maria ISLAM, Taslima JAHAN, Apurba Kanti CHOUDHURY

Inhibitory Effect of Probiotics Lactobacillus Supernatants Against Streptococcus Mutans and Preventing Biofilm Formation

TUĞBA DEMİR, Hakan DEMİR