Mikroalglerin Antiviral Etkileri

Biyologlar tarafından fitoplankton adı da verilen mikroalgler köksüz, sapsız ve yapraksız 1-50 mikrometre çapında çok küçük bitki benzeri organizmalardır. Tatlı sularda ve denizlerde yüzbinlerce türü bulunan mikroalgler sucul ekosistemlerde besin zincirinin en alt halkasını oluştururlar. Klorofil içeren çoğu türler, enerji kaynağı olarak güneş ışığını kullanarak karbondioksidi biyomasa (biyokütle) dönüştürürler. Fotosentez prosesindeki rollerinden dolayı, atmosferdeki oksijenin büyük bir kısmını mikroalgler üretirler. Çok geniş bir biyoçeşitliliğe sahip olup, 200 binden fazla tür içerdikleri bildirilmektedir. Genetik analizler sonucu mikroalg türlerinde devamlı bir artış gözlenmektedir. Son yıllarda alglerden 15 binden fazla yeni kimyasal bileşik keşfedilmiştir. Mikroalglerden elde edilen biyobileşiklerin birçoğunun antiviral etkiye sahip olduğu gözlenmiştir. Bununla beraber bu biyoaktif bileşiklerin antibakteriyal, antioksidan ve antifungal etkileri üzerinde çok kapsamlı araştırmalar yapılmış olmasına rağmen antiviral etkileri üzerindeki araştırmalar sınırlı sayıdadır. Mikroaglerin antiviral etkileri üzerinde sınırlı sayıdaki bu araştırmalarda alglerden izole edilen bazı biyobileşiklerin “HIV, SARS ve AIDS” gibi hastalıkların etmeni olan virüslere etkili olabileceği bildirilmiştir. Ancak, mikroaglerden izole edilen farklı biyobileşiklerin koronavirüs gibi günümüzün en büyük pandemisine yol açan virüslerle ilgili araştırma sayısı yok denecek kadar azdır. Bugüne kadar KOVID-19 virüsüne karşı etkili olabilecek bir aşı veya virüsün üremesini inhibe edebilecek bir ilaç bulunamamıştır. Bu küresel sağlık sorununun çözümünde mikro veya makroalglerin ümit verici önemli doğal kaynaklardan biri olabileceği düşünülmektedir. Bu derlemede özellikle mikroalglerin antiviral etkileri özetlenmeye çalışılmış ve ülkemiz bilim insanlarının yeni antiviral ilaçların geliştirilmesinde alglerin ümit verici doğal kaynaklar olabileceği vurgulanmaya çalışılmıştır.

Antiviral Effects of Microalgae

Microalgae, also called phytoplankton by biologists, are very small plant-like organisms with a diameter of 1-50 micrometers without roots, stem and leaves. Microalgae, which have hundreds of thousands of species in both fresh waters and seas, form the lowest link of the food chain in aquatic ecosystems. Most species contain chlorophyll, use sunlight as an energy source, and convert carbon dioxide into biomass (biomass). Because of their role in the photosynthesis process, microalgae produce most of the oxygen in the atmosphere. It has a very wide biodiversity and is reported to contain more than 200 thousand species. As a result of genetic analysis, a continuous increase in microalgae species is observed. More than 15 thousand new chemical compounds have been discovered from algae in recent years. It has been observed that most of the bio compounds obtained from microalgae have antiviral effects. However, although extensive research has been done on the antibacterial, antioxidant and antifungal effects of these bioactive compounds, there is limited research on their antiviral effects. In these limited number of studies on the antiviral effects of microagines, it has been reported that some biocompounds isolated from algae may be effective against viruses that are the cause of diseases such as “HIV, SARS and AIDS”. However, the number of researches on viruses that cause today's biggest pandemic, such as coronavirus, of different biocompounds isolated from microalgae, is very small. To date, no vaccine that can be effective against the COVID-19 virus or a drug that can inhibit the reproduction of the virus has not been found. It is thought that micro or macro algae may be one of the most promising natural resources in solving this global health problem. Because Spirulina, which is a microalgae, has antiviral, anticancer, antidiabetic, antibiotic, antioxidant, prebiotic, cardiovascular system protective and antiallergic effects and these positive effects are caused by bioactive compounds found in high content (Rosales-Mendoza et al., 2020a). In this review, especially the antiviral effects of microalgae were tried to be summarized and it was tried to be emphasized that algae could be promising natural resources in the development of new antiviral drugs by our country's scientists.

___

  • Ayehunie S, Belay A, Baba TW, Ruprecht RM. 1998. Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology. 18: 7-12.
  • Barrientos LG, O’Keefe BR, Bray M, Sanchez A, Gronenborn AM, Boyd MR. 2003. Cyanovirin-N binds to the viral surface glycoprotein, GP1,2 and inhibits infectivity of Ebola virus. Antiviral Research. 58: 47-56
  • Barrow C, Shahidi F. 2008. Marine Nutraceuticals and Functional Foods; CRC Press: Boca Raton, FL, USA.
  • Becker EW. 2003. Microalgae: Biotechnology and Microbiology. Cambridge University Press. 250-260 pages.
  • Begum H, Yusoff FMD, Banerjee S, Khatoon H, Shariff M. 2016. Availability and Utilization of Pigments from Microalgae. Critical Reviews in Food Science and Nutrition. 56: 2209- 2222. doi.org/10.1080/10408398.2013.764841.
  • Borowitzka MA. 2013. High-value products from microalgae-their development and commercialisation. Journal of Applied Phycology. 25: 743-756. doi.org/10.1007/s10811-013-9983-9.
  • Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM et al. 1997. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development. Antimicrobal Agents Chemotheraphy. 41: 1521-1530.
  • Brillatz T, Lauritano C, Jacmin M, Khamma S, Marcourt L, Righi D, Romano G, Esposito F, Ianora A, Queiroz EF et al. 2018. Zebrafish-based identification of the antiseizure nucleoside inosine from the marine diatom Skeletonema marinoi. PLOS ONE. 13 (4): e0196195. https://doi.org/10.1371/journal. pone.0196195.
  • Bule MH, Ahmed I, Maqbool F, Bilal M, Iqbal HMN. 2018. Microalgae as a source of high-value bioactive compounds. Frontiers in Bioscience. 10: 197-216. doi: 10.2741/s509.
  • Cai X, Chen Y, Xiaona X, Yao D, Ding C, Chen M. 2019. Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB. American Journal of Translational Research. 11: 1884-1894.
  • Cardozo KH, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P et al. 2007. Metabolites from Algae with Economical Impact. Comparative Biochemistry and Physiology Part C: Toxicology, Pharmacology. 146: 60-78. doi:10.1016/j.cbpc. 2006.05.007.
  • Christenson L, Sims R. 2011. Production and Harvesting of Microalgae for Wastewater Treatment, Biofuels, and Bioproducts. Biotechnology Advences. 29: 686-702. doi:10. 1016/j.biotechadv.2011.05.015.
  • Chirasuwan N, Chaiklahan R, Ruengjitchatchawalya M, Bunnag, B, Tanticharoen M. 2007. Anti HSV-1 activity of Spirulina platensis polysaccharide. Kasetsart Journal-Natural Science. 41: 311-318.
  • Chirasuwan N, Chaiklahan R, Kittakoop P, Chanasattru W, Marasri Ruengjitchatchawalya M, Tanticharoen M, Bunnag, B. 2009. Anti HSV-1 activity of sulphoquinovosyl diacylglycerol isolated from Spirulina platensis. Science Asia. 35: 137-141. doi: 10.2306/scienceasia1513-1874. 2009.35.137.
  • Chue KT, Ten LN, Oh YK, Woo SG, Lee M, Yoo SA. 2012. Carotinoid compositions offive microalga species. Chemistry of Natural Compounds. 48: 141-142.
  • Date AA, Destache CJ. 2016. Natural polyphenols: Potential in the prevention of sexually transmitted viral infections. Drug Discovery Today. 21: 333-341. http://dx.doi.org/10.1016/ j.drudis.2015.10.019.
  • Dewi IC, Falaise C, Hellio C, Bourgougnon N, Mouget JL. 2018. Microalgae in Health and Disease: Anticancer, Antiviral, Antibacterial, and Antifungal Properties in Microalgae. 235- 261, Academic Press. 354 p.
  • Dumontier R, Mareck A, Mati-Baouche N, Lerouge P, Bardor M. 2018. Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production of Biopharmaceuticals. Eduardo Jacob-Lopes; Leila Queiroz Zepka; Isabel Queiroz. Microalgal Biotechnology, IntechOpen, pp:177-193, 2018, 978-1-78923-332-2. ff10.5772/intechopen.73401ff. ffhal01834315.
  • Dyo YM, Purton S. 2018. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology. 164: 113-121. doi 10.1099/mic.0.000599.
  • Galasso C, Gentile A, Orefice I, Ianora A, Bruno A, Noonan DM, Sansoce C, Albini A, Brunet C. 2019. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients. 11: 1226. doi:10.3390/nu11061226.
  • Giordano D, Costantini M, Coppola D, Lauritano C, Núñez Pons L, Ruocco N, di Prisco G, Ianora A, Verde C. 2018. Biotechnological Applications of Bioactive Peptides from Marine Sources. Advences in Microbial Physiology. 73: 171- 220. https://doi.org/10.1016/bs.ampbs.2018.05.002.
  • Guedes AC, Amaro HM, Malcata FX. 2011. Microalgae as sources of high added‐value compounds-a brief review of recent work. Applied Cellular Physiology and Metabolic Engineering. 27: 597-613. doi 10.1002/btpr.575.
  • Hallmann A. 2007. Algal Transgenics and Biotechnology. Transgenic Plant Journal. 1: 81-98.
  • Harmankaya A, Özcan A, Harmankaya S. 2014. Lektinler ve Glikobilimlerdeki Önemi. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 7: 1-14.
  • Hasui M, Matsuda M, Okutani K. 1995. In Vitro Antiviral Activities of Sulfated Polysaccharides from a Marine Microalga (Cochlodinium polykrikoides) Against Human Immunodeficiency Virus and Other Enveloped Viruses. International Journal of Biological Macromolecules. 7: 293-297.
  • Hayashi K, Hayashi T, Morita N. 1993. An extract from Spirulina platensis is a selective inhibitor of Herpes simplex virus type 1 penetration into HeLa cells. Phytotheraphy Research. 7: 76- 80. https://doi.org/10.1002/ptr.2650070118.
  • Hayashi K, Hayashi T, Kojima I. 1996. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-Herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses. 12: 1463-1471. doi.org/10.1089/aid.1996.12.1463.
  • Henrikson, R. 2009. Earth Food Spirulina; Ronore Enterprises: Hana, HI, USA.
  • Hosseini SM, Khosravi-Darani K, Mozafari MR. 2013. Nutritional and medical applications of spirulina microalgae. Mini-Reviews in Medicinal Chemistry. 13: 1231-1237.
  • Huleihel M, Ishanu V, Tal J, Arad S. 2001. Antiviral Effect of Red Microalgal Polysaccharides on Herpes simplex and Varicella zoster Viruses. Journal of Applied Phycology. 13: 127-134.
  • Jerez-Martel I, García-Poza S, Rodríguez-Martel G, Rico M, AfonsoOlivares C, Gómez-Pinchetti JL. 2017. Phenolic Profile and Antioxidant Activity of Crude Extracts from Microalgae and Cyanobacteria Strains. Journal of Food Quality. ID 2924508: 8. https://doi.org/10.1155/2017/2924 508.
  • Jha V, Jain V, Sharma B, Kant A, Garlapati VK. 2017. Microalgae-based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. ChemBioEng Reviews. 4: 257-272. doi: 10.1002/cben.20160 0023.
  • Khalid M, Khalid N, Ahmed I, Hanif R, Ismail M, Janjua HA. 2017. Comparative Studies of three Novel Freshwater Microalgae Strains for Synthesis of Silver Nanoparticles: Insights of Characterization, Antibacterial, Cytotoxicity and Antiviral Activities. Journal of Applied Phycology. 29: 1851- 1863. doi 10.1007/s10811-017-1071-0.
  • Kok YY, Chu WL, Phang SM, Mohamed SM, Naidu R, Lai PJ, Ling SN, Mak JW, Lim PK, Balraj P, Khoo AS. 2011. Inhibitory activities of microalgal extracts against EpsteinBarr virus DNA release from lymphoblastoid cells. Journal of Zhejiang University Science B. 12: 335-45. doi:10.1631/jzus. B1000336.
  • Koller M, Muhr A, Braunegg G. 2014. Microalgae as versatile cellular factories for valued products. Algal Research. 6: 52- 63. doi.org/10.1016/j.algal.2014.09.002.
  • Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen K, Romano G, Lanora M. 2016. Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities. Frontiers in Marine Science. 3: 68. doi: 10.3389/fmars.2016.00068.
  • Lauritano C, Ianora A. 2016. Marine organisms with anti-diabetes properties. Marine Drugs. 14: 220. doi:10.3390/md14120220.
  • Lauritano C, Martín J, De La Cruz M, Reyes F, Romano G, Ianora A. 2018. First identification of marine diatoms with antituberculosis activity. Scientific Reports. 8: 2284. doi:10.1038/s41598-018-20611-x
  • Lauritano C, Helland K, Riccio G, Andersen JH, Ianora A, Hansen EH. 2020. Lysophosphatidylcholines and chlorophyll-derived molecules from the diatom Cylindrotheca closterium with anti-inflammatory activity. Marine Drugs. 18: 166. doi:10.3390/md18030166.
  • Lotfi H, Sheervalilou R, Zarghami N. 2018. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BioImpacts. 8: 139. doi: 10.15171/bi.2018.16.
  • Martinez Andrade KA, Lauritano C, Romano G, Ianora A. 2018. Marine Microalgae with Anti-Cancer Properties. Marine Drugs. 16: 165. doi:10.3390/md16050165.
  • Martinez KA, Lauritano C, Druka D, Romano G, Grohmann T, Jaspars M, Martin J, Diaz C, Cautain B, De La Cruz M et al. 2019. Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae. Marine Drugs. 17: 385. doi:10.3390/md17070385.
  • Ming-Der Bai, Chen-Hsi Cheng, Hsiao-Ming Wan, Yun-Huin Lin. 2011. Microalgal pigments potential as byproducts in lipid production. Journal of the Taiwan Institute of Chemical Engineers. 42: 783-786. doi:10.1016/j.jtice.2011.02.003.
  • Misurcova L, Skrovankova S, Samek D, Ambrozova J, Machu L. 2012. Health Benefits of Algal Polysaccharides in Human Nutrition. Advances in Food and Nutrition Research. 66: 75-143.
  • Mostafa SSM. 2012. Plant Science; Microalgal Biotechnology: Prospects and Applications. http://dx.doi.org/10.5772/53649.
  • Musale AG, Raja KK, Ajit S, Dasgupta S. 2020. Marine Algae as a Natural Source for Antiviral Compounds. AIJR Preprints Series: Coronavirus.
  • Nwoba EG, Ogbonna CN, Ishika T, Vadiveloo A. 2020. Microalgal Pigments: A Source of Natural Food Colors; Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. 81-123.
  • O’Keefe BR, Smee DF, Turpin JA, Saucedo CJ, Gustafson KR, Mori T, Blakeslee D, Buckheit R, Boyd MR. 2003. Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin. Antimicrobal Agents Chemotheraphy. 47: 2518-2525. doi: 10.1128/AAC.47.8.2518–2525.2003.
  • Peng J, Yuan JP, Wu CF, Wang JH. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs. 9: 1806-1828. doi:10.3390/md9101806.
  • Praseptiangga D. 2015. Algal lectins and their potential uses. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology. 10: 89-98. doi: http://dx.doi.org/10.15578/ squalen.v10i2.125.
  • Ramakrishnan R. 2013. Antiviral Properties of Cyanobacterium, Spirulina platensis-A Review. International Journal of Medicine and Pharmaceutical Sciences. 3: 1-10.
  • Rasala BA, Mayfeld SP. 2015. Photosynthetic Biomanufacturing in Green Algae; Production of Recombinant Proteins for Industrial, Nutritional, and Medical Uses. Photosynthesis Research. 123: 227-239. doi 10.1007/s11120-014-9994-7.
  • Riccio G, Ruocco N, Mutalipassi M, Costantini M, Zupo V, Coppola D, De Pascale D, Lauritano C. 2020. Ten-Year Research Update Review: Antiviral Activities from Marine Organisms. Biomolecules. 10: 1007. doi:10.3390/biom 10071007.
  • Riccio G, Lauritano C. 2020. Microalgae with immunomodulatory activities. Marine Drugs. 18: 2. doi:10.33 90/md18010002.
  • Richmond A. 2008. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Wiley-Blackwell, p: 584.
  • Romay C, Ledon N, Gonzalez R. 2000. Effects of phycocyanin extract on prostaglandin E2 levels in mouse ear inflammation test. Arzneimittelforschung. 50: 1106-1109. doi: 10.1055/s0031-1300340.
  • Rosa A, Deidda D, Serra A, Deiana M, Desi MA, Pompei R. 2005. Omega-3 Fatty Acid Composition and Biological Activity of Three Microalgae Species. Journal of Food, Agriculture and Environment. 3: 120-124.
  • Rosa GP, Tavares WR, Sousa P, Seca AM, Pinto DC. 2020. Seaweed secondary metabolites with beneficial health effects: An overview of successes in in vivo studies and clinical trials. Marine Drugs. 18: 8. doi:10.3390/md18010008.
  • Rosales-Mendoza S. 2016. Algae-Based Biopharmaceuticals. Springer. doi:10.1007/978-3- 319-32232-2.
  • Rosales-Mendoza S, García-Silva I, González-Ortega O, Sandoval-Vargas JM, Malla A, Vimolmangkang S. 2020a. The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals. Molecules, 25: 4049. doi:10.3390/molecules25184049.
  • Rosales-Mendoza S, Solís-Andrade KI, Márquez-Escobar VA, González-Ortega O, Bañuelos-Hernandez B. 2020b. Current advances in the algae-made biopharmaceuticals field. Expert Opinion on Biological Therapy. 20: 751-766. doi: 10.1080/ 14712598.2020.1739643.
  • Safafar H, Van Wagenen J, Møller P, Jacobsen C. 2015. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Marine Drugs. 13: 7339-7356. doi:10.3390/md13127069.
  • Santoyo S, Plaza M, Jaime L, Ibañez E, Reglero G, Señorans FJ. 2010. Pressurized Liquid Extraction as an Alternative Process to Obtain Antiviral Agents from the Edible Microalga Chlorella vulgaris. Journal of Agricultural and Food Chemistry. 58: 8522-8527. doi:10.1021/jf100369h.
  • Santoyo S, Jaime L, Plaza M, Herrero M, Rodriguez-Meizoso I, Ibañez E, Reglero G. 2012. Antiviral Compounds Obtained from Microalgae Commonly Used as Caratenoid Sources. Journal of Applied Phycology. 24: 731-741. doi 10.1007/ s10811-011-9692-1.
  • Sayda MA, Hetta MH, EI- Senousy WM, Salah EI Din RA, Ali GH. 2012. Antiviral activity of fresh water algae. Journal of Applied Pharmaceutical Science. 2: 21-25.
  • Sharon N, Lis H. 1989. Lectins as cell recognition molecules. Science. 246: 227-234.
  • Siddiqui A, Wei Z, Boehm M, Ahmad N. 2019. Engineering microalgae through chloroplast transformation to produce high-value industrial products. Applied Biochemistry and Biotechnology. 67: 30-40. doi: 10.1002/bab.1823.
  • Silva AJ, Cavalcanti VLR, Porto ALF, Gama WA, BrandãoCosta RMP. Bezerra RP. 2020. The green microalgae Tetradesmus obliquus (Scenedesmus acutus) as lectin source in the recognition of ABO blood type: purification and characterization. Journal of Applied Phycology. 32: 103-110. https://doi.org/10.1007/s10811-019-01923-5.
  • Silva SC, Ferreira ICFR, Dias MM, Barreiro MF. 2020. Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. Molecules. 25: 3406. doi:10.3390/molecules25153406.
  • Simpore J, Zongo F, Kabore F, Dansou D, Bere A, Nikiema JB, Pignatelli S, Biondi DM, Ruberto G, Musumeci S. 2005. Nutrition rehabilitation of HIV-infected and HIV-negative undernourished children utilizing spirulina. Annals of Nutrition and Metabolism. 49: 373-80. doi: 10.1159/000088889.
  • Singab ANB, Ibrahim NA, El-Sayed AB, El-Senousy WM, Aly H, Elsamiae ASA, Matlou AA. 2018. Antiviral, cytotoxic, antioxidant and anticholinesterase activities of polysaccharides isolated from microalgae Spirulina platensis, Scenedesmus obliquus, and Dunaliella salina. Archives of Pharmaceutical Sciences Ain Shams University. 2: 121-137. doi: 10.21608/aps.2018.18740.
  • Singh RK, Tiwari SP, Rai AK, Mohapatra TM. 2011. Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics. 64: 401-412. doi:10.1038/ja.2011.21.
  • Song S, Peng H, Wang O, Liu Z, Dong X, Wen C, Ai C, Zhang Y, Wang Z, Zhu B. 2020. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food and Function. 11:7415-7420. DOI: 10.1039/d0fo02017f.
  • Spolaore P, Joannis Cassan C, Duran E, Isambert A. 2006. Commercial Applications Microalgae. Journal of Bioscience and Bioengineering. 101: 87-96. DOI: 10.1263/jbb.101.87.
  • Stockfleth E, Meyer T. 2012. The use of sinecatechins (polyphenon E) ointment for treatment of external genital warts. Expert Opinion on Biological Theraphy. 12: 783-793. doi: 10.1517/14712598.2012.676036.
  • Su J, Guo K, Zhang J, Huang M, Sun L, Li D, Pang KL, Wang G, Chen L, Liu Z et al. 2019. Fucoxanthin, a marine xanthophyll isolated from Conticribra weissflogii ND-8: Preventive antiinflammatory effect in a mouse model of sepsis. Frontiers in Pharmacology. 10: 906. doi: 10.3389/fphar.2019.00906.
  • Talukdar J, Dasgupta S, Nagle V, Bhadra B. 2020. COVID-19: Potential of microalgae derived natural astaxanthin as adjunctive supplement in alleviating cytokine storm. SSRN.
  • Talyshinsky MM, Souprun YY, Huleihel MM. 2002. Anti-viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell International. 2: 8.
  • Taunt HN, Stoffels L, Purton S. 2017. Green biologics: The algal chloroplast as a platform for making biopharmaceuticals, Bioengineered, doi: 10.1080/21655979.2017.1377867.
  • Theodore GS, Georgios TS. 2013. Health aspects of Spirulina (Arthrospira) microalga food Supplement. Journal of Serbian Chemical Society. 78: 395-405. doi: 10.2298/JSC121020152 S.
  • Ueno M, Nogawa M, Siddiqui R, Watashi K, Wakita T, Kato N, Ikeda M, Okimura T, Isaka S, Oda T, Ariumi Y. 2019. Acidic polysaccharides isolated from marine algae inhibit the early step of viral infection. International Journal of Biological Macromolecules. 124: 282-290.
  • Xue L, Pan W, Jiang G, Wang J. 2006. Transgenic Dunaliella salina as a Bioreactor. U.S. Patent No. 7:081,567.
  • Wang W, Wang SX, Guan HS. 2012. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview. Marine Drugs. 10: 2795-2816. doi:10.3390/md10122795.
  • Yakoot M, Salem A. 2012. Spirulina platensis versus silymarin in the treatment of chronic hepatitis C virus infection. A pilot randomized, comparative clinical trial. BMC Gastroenterology, 12: 32.
  • Yıldız F. 2010. Advences in Food Biochemistry. CRC Press. Taylor and Francis Group, London, 239-289 and 313-339.
  • Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK. 2004. Antiviral Effects of Sulfated Exopolysaccharide from the Marine Microalga Gyrodinium impudicum Strain KG03. Marine Biotechnology. 6: 17-25. https://doi.org/ 10.1007/s10 126-003-0002-z.
  • Yolonda PF, Robledo D. 2014. Bioactive Phenolic Compounds from Algae: Plant and Animal Sources, First Edition. Edited by Blanca Hernandez-Ledesma and Miguel Herrero. John Wiley and Sons, Ltd. 113-129.
  • Zhang X, Xia Q, Yang G, Zhu D, Shao Y, Zhang J, Cui Y, Wang R, Zhang L. 2017. The anti-HIV-1 activity of polyphenols from Phyllanthus urinaria and the pharmacokinetics and tissue distribution of its marker compound, gallic acid. Journal of Traditional Chinese Medical Sciences. 4: 158-166. doi.org/ 10.1016/j.jtcms.2017.07.013.
  • Zhang X. 2018. Anti-retroviral drugs: Current state and development in the next decade. Acta Pharmaceutica Sinica B. 8, 131-136. doi.org/10.1016/j.apsb.2018.01.012.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: 12
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Ross 308 Etlik Piliçlerde Damızlık Yaşının Kuluçka Sonuçları ve Civciv Kalitesi Üzerine Etkisi

Murat DURMUŞ, Kadriye KURŞUN, Mikail BAYLAN, Hasan rüştü KUTLU

The Intensity of Tomato Post-Harvest Rot in the Surroundings of Tandojam

Safia NIZAMANI, Allah Jurio KHASKHELI, Asad Ali KHASKHELI, Absar Mithal JISKANI, Sajad Ali KHASKHELI, Gul Bahar POUSSIO, Hafeez-u-Rahman JAMRO, Muhammad Ibrahim KHASKHELI

Investigation of benthic marine litter in the Yumurtalık Fishing Port

ÖZGÜR YILMAZ, Celal ERBAŞ, Mahmut Ali GÖKÇE

A Model for Determining the Interactions Between some Honey Bee (Apis mellifera L.) Genotypes and Different Grooming Times in Terms of Aggression

SAMET HASAN ABACI, SELİM BIYIK

Inhibitory Effect of Probiotics Lactobacillus Supernatants Against Streptococcus Mutans and Preventing Biofilm Formation

TUĞBA DEMİR, Hakan DEMİR

Areal Precipitation Estimation Using Satellite Derived Rainfall Data over an Irrigation Area

Mehmet Ali AKGÜL, Hakan AKSU

Su Sertliğinin Filtre Kahvenin Uçucu Bileşenlerine ve Lezzetine Etkisi

Ceyda DADALI, YEŞİM ELMACI

Hayvan Yemi Olarak Kullanılan Şekerpancarı Yapraklarının Nitrat İçeriğine Azot-Bor Uygulamasının ve Zamanın Etkisi

Bedriye BİLİR, Kadir SALTALI

Twenty Minutes of Ultraviolet-B Light Improved Quality of Cherry Fruits (Prunus avium L. cv 0900 Ziraat) During Storage

Tuğçe ŞAHİN, REZZAN KASIM, M. Ufuk KASIM

Mikroalglerin Antiviral Etkileri

Aybike TÜRKMEN, İhsan AKYURT