Bazı Turunçgil Anaçlarının Klasik ve Yeni Nesil Doku Kültürü Teknikleri ile Mikroçoğaltımı

Çalışmada, ‘Tuzcu 31-31 turuncu’ ve ‘C-35 sitranjı’ turunçgil anaçlarının, in vitro’da geleneksel katı kültür ve geçici daldırma prensibine dayanan Plantform biyoreaktör sistemi ile karşılaştırmalı olarak mikroçoğaltım ve köklendirme denemeleri yürütülmüştür. Turunçgil anaçlarının katı kültür mikroçoğaltım denemeleri için, Murashige ve Skoog (MS) ve Woody Plant (WPM) besin ortamları ile bitki büyüme düzenleyicilerden 6-Benzylaminopurine (BAP) (0; 1,0; 2,0 mg L-1), Kinetin (KIN) (0; 0,5; 1,0 mg L-1) ve 2-Isopentenyl adenine (2IP) (0; 1,0; 2,0 mg L-1) farklı konsantrasyonları denenmiştir. Katı kültür köklenme denemeleri için; MS, ½ MS, WPM besin ortamları ile 1- Naphthaleneacetic acid (NAA) (0; 0,5; 1,0; 2,0 mg L-1) ve Indole-3-butyric acid (IBA) (0; 0,5; 1,0; 2,0 mg L-1) bitki büyüme düzenleyicilerinin farklı konsantrasyonları incelenmiştir. Her iki genotip içinde en iyi mikroçoğaltım sonuçları 2,0 mg L-1 BAP içeren MS besin ortamından ve en iyi köklenme sonuçları 0,5 mg L-1 NAA içeren ½ MS besin ortamından elde edilmiştir. Mikroçoğaltım ve köklenme için belirlenen en iyi besin ortamı içeriği ile Plantform biyoreaktör sisteminde çalışılmıştır. Çalışma sonucunda, her iki genotipte de kardeşlenme ortamında, Plantform sistemi bitki kalitesi bakımından daha iyi sonuç vermiştir. Köklenme ortamında Plantform sistemi, katı kültür besin ortamına göre daha avantajlı bulunmuştur. SSR markırları ile yapılan tarama sonucunda da, Plantform sisteminde çoğaltılan ve köklendirilen bitkilerde, herhangi bir genetik açılımın olmadığı belirlenmiştir.

Micropropagation of Some Citrus Rootstocks with Classical and New Generation Tissue Culture Techniques

In this study, micropropagation and rooting of ‘Tuzcu 31-31 sour orange’ and ‘C-35 citrange’ citrus rootstocks were conducted by comparing with Plantform temporary immersion bioreactor system and traditional solid culture. Murashige and Skoog Medium (MS) and Woody Plant Medium (WPM) supplemented with 6-Benzylaminopurine (BAP) (0, 1.0, 2.0 mg L-1 ), Kinetin (KIN) (0, 0.5, 1.0 mg L -1 ) and 2-Isopentenyl adenine (2IP) (0, 1.0, 2.0 mg L-1 ) were used in solid culture experiments. For solid culture rooting experiments, MS, ½ MS and WPM media supplemented with different concentrations of 1-Naphthaleneacetic acid (NAA) (0, 0.5, 1.0, 2.0 mg L-1 ) and Indole-3-butyric acid (IBA) (0, 0.5, 1.0, 2.0 mg L-1 ) were used. In both genotypes, the best micropropagation and rooting results were obtained from MS medium containing 2.0 mg L-1 BAP and ½ MS nutrient medium containing 0.5 mg L-1 NAA, respectively. Plantform bioreactor system was studied with the best medium content determined for micropropagation and rooting. As a result of the study, Plantform system gave better results in terms of plant quality in the micropropagation medium for both genotypes. Plantform system in rooting medium was found to be more advantageous than solid culture medium. As a result of the screening with SSR markers, it was determined that there was no somaclonal variation in the plants micropropagated and rooted in Plantform system.

___

  • Aka Kaçar Y. 2007. Türkiye Turunçgil Gen Kaynaklarının Moleküler Karakterizasyonu ve SSR Markırlarının Geliştirilmesi. TÜBİTAK Projesi, TOGTAG–3241 Proje Sonuç Raporu.
  • Benelli C, Fernanda CM, De Carlo A. 2015. ‘Plant form’, a temporary immersion system, for in vitro propagation of Myrtus communis and Olea europaea. 6th International Symposium on Production and Establishment of Micropropagated Plants. 19-24 April 2015, Sanremo, Italy.
  • Biçen B, Dönmez D, Simsek O, Aka Kacar Y. 2017. Effects of Different Media on Micropropagation and Rooting of Myrtle (Myrtus communis L.) in In Vitro Conditions. European Biotechnology Congress, 25-27 May 2017, Dubrovnik, Croatia.
  • Cabasson C, Alvard D, Dambier D, Ollitrault P, Teisson C. 1997. Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell, Tissue and Organ Culture, 50(1):33-37.
  • Cavallaro V, Scalisi C, Saita A, Malvuccio A, La Rosa S, Pellegrino A, Barbera AC. 2015. Improving in vitro mass proliferation of carob (Ceratonia siliqua L.) from seedling apices by temporary immersion systems. VI International Symposium on Production and Establishment of Micropropagated Plants, 1155:221-226.
  • Daungban S, Pumisutapon P, Topoonyanont N, Poonnoy P. 2017. Effects of Explants Division by Cutting, Concentrations of TDZ and Number of Sub-culture Cycles on Propagation of ‘Kluai Hom Thong’ Banana in A Temporary Immersion Bioreactor System. Thai Journal of Science and Technology, 6(1):89-99.
  • Etienne H, Berthouly M. 2002. Temporary Immersion Systems in Plant Micropropagation. Plant Cell, Tissue and Organ Culture, 69(3):215-231.
  • Frómeta OM, Morgado MME, Da Silva JAT, Morgado DTP, Gradaille MAD. 2017. In Vitro Propagation of Gerbera jamesonii Bolus ex Hooker f. in A Temporary Immersion Bioreactor. Plant Cell, Tissue and Organ Culture, 129(3):543- 551.
  • Gatti E, Ozudogru A, Lambardi M, Sgarbi E. 2015. Comparison between a conventional culture system and Plantform bioreactor in Quercus robur micropropagation. 6th International Symposium on Production a Establishment of Micropropagated Plants, 19-24 April 2015, Sanremo, Italy.
  • Georgiev V, Schumann A, Pavlov A, Bley T. 2014. Temporary immersion systems in plant biotechnology. Engineering in Life Sciences, 14(6):607-621.
  • Gutiérrez LG, López-Franco R, Morales-Pinzón T. 2016. Micropropagation of Guadua angustifolia Kunth (Poaceae) Using A Temporary Immersion System RITA®. African Journal of Biotechnology, 15(28):1503-1510.
  • Gülşen O, Uzun A. 2011. Turunçgil Araştırmalarında Biyoteknoloji Çalışmaları. Anadolu Tarım Bilimleri Dergisi, 26(1):68-76.
  • Kokotkiewicz A, Bucinski A, Luczkiewicz M. 2015. Xanthone, Benzophenone and Bioflavonoid Accumulation in Cyclopia genistoides (L.) Vent (honeybush) Shoot Cultures Grown on Membrane Rafts and in A Temporary Immersion System. Plant Cell, Tissue and Organ Culture, 120(1):373-378.
  • Lambardi M, Roncasaglia R, Bujasha D, Baileiro F, Correira Da Silva DP, Ozudogru EA. 2015. Improvement of shoot proliferation by liquid culture in temporary immersion. 6th International Symposium on Production and Establishment of Micropropagated Plants, 19-24 April 2015, Sanremo, Italy.
  • Lloyd G, McCown B. 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int. Plant Prop. Soc. Proc., 30:421-427.
  • Masnoddin M, Repin R, Aziz ZA, 2016. Micropropagation of an Endangered Borneo Orchid, Paphiopedilum rothschildianum Callus Using Temporary Immersion Bioreactor System. Thai Agricultural Research Journal, 34(2):161-171.
  • Meiping G, Zhicheng L, Chi Z, Wen J, Fanglian H, Liu Y, Shaolong W. 2016. Optimization of Sagittaria sagittifolia Rapid Propagation in Temporary Immersion Bioreactors System. Southwest China Journal of Agricultural Sciences, 29(11):2704-2708.
  • Murashige T, Skoog F. 1962. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant, 15:473-497.
  • Paek KY, Chakrabarty D, Hahn EJ. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell, Tissue and Organ Cult., 81:287-300.
  • Ramírez-Mosqueda MA, Iglesias-Andreu LG. 2016. Evaluation of Different Temporary Immersion Systems (BIT®, BIG, and RITA®) in The Micropropagation of Vanilla planifolia Jacks. In Vitro Cellular & Developmental Biology-Plant, 52(2):154- 160.
  • Roels S, Noceda C, Escalona M, Sandoval J, Canal MJ, Rodriguez R, Debergh P. 2006. The effect of headspace renewal in a temporary immersion bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell, Tissue and Organ Cult., 84:155-163.
  • Sacco E, Mascarello C, Pamato M, Musso V, Ruffoni B. 2015. Evaluation of Temporary Immersion System for in vitro Propagation of Stevia rebaudiana Bertoni. Acta Horticulturae, 1083:327-333.
  • Szopa A, Kokotkiewicz A, Luczkiewicz M, Ekiert H. 2017. Schisandralignans Production Regulated by Different Bioreactor Type. Journal of Biotechnology, 247:11-17.
  • Şimşek Ö, Kanat F, Serçe S, Kaçar YA. 2008. Bazı Meyve Türlerinde DNA İzolasyon Yöntemlerinin Etkinliğinin Karşılaştırılması. Derim, 25(1):59-69.
  • Tuzcu Ö. 1998. Turunçgiller Lisans Ders Notları. Ç.Ü.Z.F. Bahçe Bitkileri Bölümü, Adana, (Yayınlanmamış).
  • Welander M, Persson J, Asp H, Zhu LH. 2014. Evaluation of a New Vessel System Based on Temporary Immersion System for Micropropagation. Scientia Horticulturae, 179:227-232.
  • Welander M, Sayegh A, Hagwall F, Kuznetsova T, Holefors A. 2017. Technical improvement of a new bioreactor for large scale micropropagation of several Vaccinium cultivars. Acta Horticulturae, 1180(53):387-392.
  • Yenice Z, 2010. Geçici Daldırma Sistem Biyoreraktörlerle Su Mercimeği (Lemna minor L.) Bitkisinin in vitro Çoğaltımı. Yüksek Lisans Tezi, Ankara Üniversitesi Biyoteknoloji Enstitüsü, Ankara (Yayınlanmamış).
  • Zhang B, Hu Y, Jia M, Jin L, Xu D, Chen J. 2017. Micropropagation of Pinellia ternata (Thunb.) Berit. Plantlets Using Temporary Immersion Bioreactors. Journal of Biobased Materials and Bioenergy, 11(1):59-65.