Alfa-amilaz Enzimlerini Üreten Termofilik Bacillus Suşlarının İzolasyonu ve Enzimlerin Kısmi Karakterizasyonu

Bu çalışmada, Erzin sınırları içerisinde bulunan Burnaz Çayı kıyı kesimlerinden toplanan toprak numunelerinden üç adet termofilik Bacillus sp. izolasyonu gerçekleştirilmiştir. Bakteriler sırasıyla Bacillus sp. CT1, CT2 ve CT3 olarak isimlendirilmişlerdir. Bakterilerce α-amilaz üretimi CT1 suşu için 60°C, CT2 ve CT3 suşları için ise 80°C’de maksimum düzeye çıkmıştır. CT1 α-amilazı optimum aktivitesini 90°C, CT2 ve CT3 α- amilazları ise 60°C’de göstermişlerdir. Yine CT2 α-amilazı optimum aktivitesini pH 7,0’da, CT1 ve CT3 α-amilazları ise pH 8,0’da göstermişlerdir. CT1, CT2 ve CT3 enzimlerine ait spesifik aktiviteler 55°C’de sırasıyla 317,6; 113,3 ve 362,7 U/mg olarak gerçekleşmiştir. Enzimlerin moleküler ağırlıkları zimogram analizi ile CT1 ve CT3 α- amilazları için 65 kDa, CT2 α-amilazı için ise 38 kDa olarak hesaplanmıştır.

Isolation of Alpha-amylase Producing Thermophilic Bacillus Strains and Partial Characterization of the Enzymes

In the present study, we isolated three thermophilic Bacillus strains from the soil samples collected from the coast sediments of the Burnaz Stream located in Erzin. The isolates were entitled as Bacillus sp. CT1, CT2, and CT3, respectively. The maximum α-amylase production was revealed at 60°C for CT1 strain, and at 80°C for CT2 and CT3 strains, respectively. The optimum enzyme activity was observed at 90°C for CT1 α-amylase, whereas at 60°C for CT2 and CT3 α-amylases. On the other hand, optimum pH value for CT2 α-amylase was 7.0, whereas 8.0 for CT1 and CT3 α-amylases. The specific activities of CT1, CT2, and CT3 amylases were 317.6, 113.3 and 362.7 U/mg at 55°C, respectively. The estimated molecular weight of CT1 and CT3 α-amylase was 65 kDa, and for CT2 α-amylase was 38 kDa by zymogram analysis.

___

  • Akcan N, Uyar F, Güven A. 2011. Alpha-amylase production by Bacillus subtilis RSKK96 in submerged cultivation. Kafkas Univ. Vet. Fak. Derg., 17 (Suppl A): 17-22.
  • Asgher M, Asad MJ, Rahman SU, Legge RL. 2007. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food. Eng., 79: 950-955. DOI:10.1016/j.jfoodeng.2005.12.053.
  • Aygan A, Arikan B. 2008. A new halo-alkaliphilic, thermostable endoglucanase from moderately halophilic Bacillus sp. C14 isolated from Van Soda Lake. Int. J. Agri. Biol., 10: 369- 374.
  • Aygan A, Arikan B, Korkmaz H, Dinçer S, Çolak Ö. 2008. Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68. Braz. J. Microbiol., 39: 1517-8382. DOI: 10.1590/S1517- 838220080003000027.
  • Bertoldo C, Antranikian G. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol., 6(2): 151-160. PMID: 12038998.
  • Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G. 2003. Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem., 38: 1397-1403. DOI: 10.1016/S0032- 9592(03)00037-2.
  • Campbell LL. 1955. Purification and some properties of a α- amylase from a facultative thermophilic bacteria. Arc. Biochem. Biophys., 54: 154-161.
  • Canoğulları S. 1999. Etlik Piliç Karma Yemlerinde Enzim Kullanımı ve Kullanım Koşulları. Doktora Tezi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Zootekni Anabilim Dalı, Adana.
  • Claus D, Berkeley RCW. 1986. The Genus Bacillus. In: Bergey`s Manual of Systematic Bacteriology, Sneath PHA, Mair NS, Sharpe ME, Holt JG. (Eds.). 1st Edition, Williams and Wilkins, Baltimore-London, vol. 2, pp. 1105-1139. ISBN: 0-683-04108-8.
  • Demirkan E. 2010. Production, purification, and characterization of α-amylase by Bacillus subtilis and its mutant derivates. Turk. J. Biol., 35: 705-712. DOI: 10.3906/biy-1009-113.
  • Femi-Ola TO, Olowe BM. 2011. Characterization of alphaamylase from Bacillus subtilis BS5 isolated from amitermes evuncifer silvestris. Res. J. Microbiol., 6: 140-146. DOI: 10.3923/jm.2011.140.146.
  • Fogarty WM, Kelly CT. 1979. Developments in microbial extracellular enzymes. In: Topics in Enzyme and Fermentation Biotechnology, Wiseman A. (Ed.). Vol. 3, John Wiley and Sons, New York, pp: 45-108. ISBN-13: 978-0853121404
  • Gaur D, Jain PK, Bajpai V. 2012. Production of extracellular α- amylase by thermophilic Bacillus sp. isolated from arid and semi-arid region of Rajasthan, India. J. Microbiol. Biotech. Res., 2: 675-684.
  • Godfrey T, West S. 1996. Introduction to industrial enzymology. Industrial Enzymology, 2nd Edition. Godfrey Y, West S. (Eds). Stockton Press, New York, pp. 1-17. ISBN: 0-333-59464-9
  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. 2003. Microbial α-amylases: A biotechnological perspective. Process Biochem., 38(11): 1599-1616. DOI: 10.1016/S0032-9592(03)00053-0.
  • Haki GD, Rakshit SK. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol., 89: 17-34. DOI: 10.1016/S0960-8524(03)00033-6. Hamilton LM, Kelly CT, Fogarty WM. 1999. Purification and properties of the raw starch degrading α-amylase of Bacillus sp. IMD 434. Biotechnol. Lett., 21: 111-115. DOI: 0.1023/A:1005413816101.
  • Hewitt CJ, Solomons GL. 1996. The production of α-amylase (E.C.3.2.1.1.) by Bacillus amyloliquefaciens, in a complex and a totally defined synthetic culture medium. J. Ind. Microbiol., 17: 96-99. DOI: 10.1007/BF01570050. Ikeda T, Yamazaki H, Yamashita K, Shinke R. 1992. The tetracycline inducible expression of alpha-amylase in Bacillus subtilis. J. Ferment. Bioeng., 74: 58-60. DOI: 10.1016/0922-338X(92)90270-5.
  • Jyoti J, Lal N, Lal R, Kaushik A. 2011. Partial purification and characterization of an acidophilic extracellular α-amylase from Bacillus licheniformis JAR-26. Int. J. Adv. Biotechnol. Res., 2: 315-320.
  • Khoo SL, Amirul AA, Kamaruzaman M, Nazalan N, Azizan MN. 1994. Purification and characterization of α-amylase from Aspergillus flavus. Folia Microbiol., 39: 392-398. PMID: 772977.
  • Kim J, Nanmori T, Shinke R. 1989. Thermostable raw starch digesting amylase from Bacillus stearothermophilus. Appl. Environ. Microbiol., 55: 1638-1639. PMID: 16347958.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680- 685. DOI: 10.1038/227680a0.
  • Lee SP, Morikawa M, Takagi M, Imanaka T. 1994. Cloning of the aapT gene and characterization of its product, α- amylase-pullulanase (AapT), from thermophilic and alkaliphilic Bacillus sp. strain XAL601. Appl. Environ. Microbiol., 60: 3764-3773. PMID: 7986049.
  • Lennete EH, Ballows A, Hausler JWJr, Shadomy JH. 1985. Manual of Clinical Microbiology, 4th Edition, Washington D.C., American Society for Microbiology, pp. 1149.
  • Leveque E, Janecek S, Haye B, Belarbi A. 2000. Thermophilic archaeal amylolytic enzymes-catalytic mechanism, substrate specificity and stability. Enyzme. Microb. Technol., 26: 3- 14. Lin HY, Tsay SS. 1987. Extracellular thermostable alphaamylase from Bacillus stearothermophilus Q8. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi, 20(4): 327-338.
  • Mahdavi A, Sajedi RH, Rassa M, Jafarian V. 2010. Characterization of an α-amylase with broad temperature activity from an acid-neutralizing Bacillus cereus strain. Iran. J. Biotechnol., 8: 103-111.
  • Mamo G, Gessesse A. 1999. Purification and characterization of two raw-starch digesting thermostable amylase from a thermophilic Bacillus. Enzyme Microb. Technol., 25: 433- 438. DOI: 10.1016/S0141-0229(99)00068-X.
  • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31: 426-428. DOI: 10.1021/ac60147a030.
  • Mora D, Fortina MG, Nicastro G, Parini C, Manachini PL. 1998. Genotypic characterization of thermophilic bacilli: A study on new soil isolates and several reference strains. Res. Microbiol., 149: 711-722. PMID: 9921578.
  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV. 2001. Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol., 51: 433-446. DOI: 10.1099/00207713-51-2-433
  • Nielsen JE, Borchert TV. 2000. Protein engineering of bacterial a-amylases. Biochim. Biophys. Acta, 1543: 253-274. DOI: 10.1016/S0167-4838(00)00240-5.
  • Ogasahara K, Imanishi A, Isemura T. 1970. Studies on thermophilic α-amylases from Bacillus stearothermophilus, I. Some general and physiochemical properties of the thermophilic α-amylase. J. Biochem., 67: 65-75.
  • Ohdan K, Kuriki T, Kaneko H, Shimada J, Takada T, Fujimoto Z, Mizuno H, Okada S. 1999. Characteristics of two forms of alpha-amylases and structural implication. Appl. Environ. Microbiol., 65: 4652-4658.
  • Oyeleke SB, Oduwole AA. 2009. Production of amylase by bacteria isolated from a cassava waste dumpsite in Minna, Niger State, Nigeria. Afr. J. Microbiol. Res., 3(4): 143-146.
  • Pfueller SL, Elliott WH. 1969. The extracellular α-amylase of Bacillus stearothermophilus. J. Biol. Chem., 244: 48-54.
  • Priest FG. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev., 41: 711-753.
  • Rasooli I, Astaneh SDA, Borna H, Barchini KA. 2008. A thermostable α-amylase producing natural variant of Bacillus spp. isolated from soil in Iran. Am. J. Agric. Biol. Sci., 3: 591-596. DOI: 10.3844/ajabssp.2008.591.596.
  • Reddy NS, Nimmagadda A, Rao KRSS. 2003. An overview of the microbial α-amylase family. Afr. J. Biotechnol., 2: 645- 648.
  • Sidhu GS, Sharma P, Chakrabarti T, Gupta JK. 1997. Strain improvement for the production of a thermostable α- amylase. Enzyme Microb. Technol., 21: 525-530. DOI: 10.1016/S0141-0229(97)00055-0.
  • Vieille C, Zeikus GJ. 2001. Hyperthermophilic enzymes: Sources, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev., 65: 1-43. DOI: 10.1128/MMBR.65.1.1-43.2001.
  • Vihinen M, Mantsala P. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol., 24: 329-418. DOI: 10.3109/10409238909082556.
  • Wind RD, Buitelaar RM, Eggink G, Huizing HJ, Dijkhuizen L. 1994. Characterization of a new Bacillus stearothermophilus isolate: A highly thermostable a-amylase producing strain. Appl. Microbiol. Biotechnol., 41: 155-162. DOI: 10.1007/BF00186953.
  • Yamagata H, Udaka S. 1993. Starch-processing enzymes produced by recombinant bacteria. In: Recombinant Microbes for Industrial and Agricultural Applications, Murooka Y, Imanaka T. (Eds.). Marcel Dekker Inc., New York, pp: 325-340. ISBN: 0-8247-9141-X.
  • Yamashita I. 1993. Starch-processing enzymes produced by recombinant yeasts and fungi. In: Recombinant Microbes for Industrial and Agricultural Applications, Murooka Y, Imanaka T. (Eds.). Marcel Dekker Inc., New York, pp: 341- 357. ISBN: 0-8247-9141-X.
  • Yang S-J, Lee H-S, Park C-S, Kim Y-R, Moon T-W, Park K-H. 2004. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an α-amylase and a cyclodextrin-hydrolyzing enzyme. Appl. Environ. Microbiol., 70: 5988-5995. DOI: 10.1128/AEM.70.10.5988- 5995.2004.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Slope Gradient and Vegetation Cover Effects on The Runoff and Sediment Yield in Hillslope Agriculture

Obaid ur REHMAN, Muhammad RASHİD, Rahina KAUSAR, Sarosh ALVİ, Riaz HUSSAİN

The relationships between phenylthiocarbamide taste perception and smoking, work out habits and susceptibility to depression

SEVGİ DURNA DAŞTAN, Yusuf Muhammed DURNA, TANER DAŞTAN

The Symptoms of Herbicidal Action: The Case of Aclonifen

ÖZGÜR KIVILCIM KILINÇ

Response Surface Modelling of Noradrenaline Production in Hairy Root Culture of Purslane (Portulaca oleracea L.)

Mehdi GHORBANİ, Aghil GHORBANİ, Mansoor OMIDI, Seyed Mohammad HASHEMİ

An Overview of Food Emulsions: Description, Classification and Recent Potential Applications

FATMA MELTEM SERDAROĞLU, BURCU ÖZTÜRK KERİMOĞLU, Ayşe KARA

Japon Balığı (Carassius auratus Linnaeus, 1758) Dokularında Bor Akümülasyonu

TUNCER OKAN GENÇ, BURAK EVREN İNANAN, MURAT YABANLI, FEVZİ YILMAZ

Study on Climatic Variation and Its Effect on Vegetable Type Soybean Genotypes at Khumaltar, Lalitpur in the Last Ten Years

Santosh Raj TRİPATHİ, Jiban SHRESTHA, Jagat Devi RANJİT, Reshma NEUPANE

Aclonifen Uygulama Zamanının Tilki kuyruğu [Alopecurus myosuroides Huds. (Poaceae)] Yapraklarındaki Kritik Konsantrasyon Değerine Etkisi

ÖZGÜR KIVILCIM KILINÇ

A New Approach to Determine Time and Temperature Combination for Electrical Conductivity Test in Sorghum

MEHMET DEMİR KAYA, ONUR İLERİ

Antioxidant Activity and Phenolic Content of Apple Cider

Nilgün Havva BUDAK, FİLİZ ÖZÇELİK, Zeynep Banu SEYDİM GÜZEL