Konjenital müsküler distrofili hastalarımızın değerlendirilmesi

Amaç: Bu çalışmada konjenital müsküler distrofi tanısı ile izlenen hastalarımızın klinik ve radyolojik bulgularının değerlendirilmesi amaçlanmıştır. Gereç ve Yöntem: Temmuz 2005 ve Temmuz 2008 arasında, Dokuz Eylül Üniversitesi Tıp Fakültesi, Çocuk Nöroloji Bilim Dalı’nda konjenital müsküler distrofi tanısı alan olguların dosya kayıtları geriye dönük olarak incelendi.Bulgular: Çalışmaya alınan 13 hastanın yedisi (%53) erkek, altısı (%47) kızdı. Yedi hasta (%53) alfa distroglikanopati, beş hasta (%38) kollajen VI ile ilişkili konjenital müsküler distrofi, bir hasta (%9) “rigid spine” sendromu grubunda yer almaktaydı. Alfa distroglikanopati ve kollajen VI ile ilişkili konjenital müsküler distrofili hastaların ortalama yaşı sırasıyla 3,57±2,92 (0,5-7) ve 10,83±5,67 (1-16) yıldı. Alfa distroglikanopati grubunda beş olguda (%71) göz tutulumu, altı olguda (%85) merkezi sinir sistemi gelişimsel anomalisi vardı. Olguların tümünde beyin sapı hipoplazisi, altısında (%85) beyincikte kistler vardı. Kollajen VI ile ilişkili konjenital müsküler distrofi grubunda en sık başvuru yakınması motor gelişimde gerilik, proksimal eklem kontraktürleri ve değişen derecelerde distal eklem hiperlaksisitesiydi. “Rigid spine” sendromu tanısı alan hastada ise en önemli klinik bulgular ileri derecede skolyoz ve kas atrofisiydi. Çıkarımlar: Konjenital müsküler distrofilerde klinik bulgular değişken olup ülkemizde tanı alan konjenital müsküler distrofili olguların artması değişik tiplerin görülme sıklığının saptanmasına olanak sağlayacaktır.

Evaluation of cases with congenital muscular dystrophy

Aim: The aim of this study is to evaluate clinical and radiological features of our cases with congenital muscular dystrophy. Material and Method: The data of cases who were diagnosed with congenital muscular dystrophy in the Division of Pediatric Neurology of Dokuz Eylül University School of Medicine between July 2005 and July 2008 were analysed retrospectively.Results: A total of 13 cases were evaluated. Among the 13 cases, seven (53%) were boys and six (47%) were girls. Seven patients (53%) were in the alfa dystroglycanopathy group, five patients (38%) were in collagen VI related congenital muscular dystrophy group and one patient (9%) was in “rigid spine” group. The mean age of cases with alfa dystroglycanopathy and collagen VI related congenital muscular dystrophy were 3.57±2.92 (0.5-7) and 10.83±5.67 (1-16) years, respectively. In alfa dystroglycanopathy group, five cases (71%) had eye involvement and six cases (85%) had developmental malformations of the central nervous system. All cases had brainstem hypoplasia and six cases (85%) had cerebellar cysts. In collagen VI related congenital muscular dystrophy group, the main complaints were retardation in motor mile stones, contractures in proximal joints and hyperlaxicity in distal joints. The most important clinical features in the case diagnosed with “rigid spine” syndrome were severe scoliosis and muscle atrophy.Conclusions: The clinical features of congenital muscular dystrophies are heterogenous and increase in number of cases diagnosed as congenital muscular dystrophy should give an opportunity to determine the incidence of different types of congenital muscular dystrophies in our country.

___

  • 1. Voit T. Congenital muscular dystrophies. In: Karpati G, Hilton-Jones D, Griggs RC, (eds). Disorders of voluntary muscle. 7th ed. Cambridge, UK: Press Syndicate of the University of Cambridge, 2001: 503-24.
  • 2. Neuromuscular disorders: gene location. Neuromuscul Disord 2006;16: 64 90.
  • 3. Brockington M, Yuva Y, Prandini P, et al. Mutations in the fukutin related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 2001; 10: 2851-9.
  • 4. Brockington M, Blake DJ, Prandini P, et al. Mutations in the fukutin related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet 2001; 69: 1198-209.
  • 5. Darin N, Kimber E, Kroksmark AK, Tulinius M. Multiple congenital contractures: birth prevalence, etiology, and outcome. J Pediatr 2002; 140: 61 7.
  • 6. Mostacciuolo ML, Barbujani G, Armani M, Danieli GA, Angelini C. Genetic epidemiology of myotonic dystrophy. Gen Epidemiol 1987; 4: 289-98.
  • 7. Muntoni F, Voit T. The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord 2004; 14: 635-49.
  • 8. Peat RA, Smith JM, Compton AG, et al. Diagnosis and etiology of congenital muscular dystrophy. Neurology 2008; 71: 312-21.
  • 9. Talim B, Akcoren Z, Haliloğlu G, et al. Frequency of different forms of congenital muscular dystrophy in a referral center. Neuromuscul Disord 2008; 18: 724-833.
  • 10. Muntoni F, Brockington M, Blake DJ, Torelli S, Brown SC. Defective glycosylation in muscular dystrophy. Lancet 2002; 360: 1419-21.
  • 11. Cohn RD. Dystroglycan: important player in skeletal muscle and beyond. Neuromuscul Disord 2005; 15: 207-17.
  • 12. Martin PT. The dystroglycanopathies: the new disorders of O-linked glycosylation. Semin Pediatr Neurol 2005; 12: 152-8.
  • 13. Muntoni F. Journey into muscular dystrophies caused by abnormal glycosylation. Acta Myol 2004; 23: 79-84.
  • 14. Dobyns WB, Pagon RA, Armstrong D, et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 1989; 32: 195-210.
  • 15. Yis U, Uyanık G, Kurul S, et al. A case of Walker Warburg syndrome resulting from a homozygous POMT1 mutation. Eur J Pediatr Neurol 2007; 11: 46 9.
  • 16. Toda T, Kobayashi K, Kondo-Iida E, Sasaki J, Nakamura Y. The Fukuyama congenital muscular dystrophy story. Neuromuscul Disord 2000; 10: 153-9.
  • 17. Nakanishi T, Sakauchi M, Kaneda Y, et al. Cardiac involvement in Fukuyama-type congenital muscular dystrophy. Pediatrics 2006; 117: 1187-92.
  • 18. Silan F, Yoshioka M, Kobayashi K, et al. A new mutation of the fukutin gene in a non-Japanese patient. Ann Neurol 2003; 53: 392-6.
  • 19. Godfrey C, Clement E, Mein R, et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007; 130: 2725-35.
  • 20. De Bernabe DB, Van Bokhoven H, Van Beusekom E, et al. A homozygous nonsense mutation in the fukutin gene causes a Walker Warburg syndrome phenotype. J Med Gen 2003; 40: 845-8.
  • 21. Cotarelo RP, Valero MC, Prados B, et al. Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker Warburg syndrome. Clin Genet 2008; 73: 139-45.
  • 22. Cormand B, Pihko H, Bayes M, et al. Clinical and genetic distinction between Walker-Warburg syndrome and muscle-eye-brain disease. Neurology 2001; 56: 1059-69.
  • 23. Topaloğlu H, Brockington M, Yuva Y, et al. FKRP gene mutations cause congenital muscular dystrophy, mental retardation and cerebellar cysts. Neurology 2003; 60: 988-92.
  • 24. Ullrich O. Kongenitale atonisch-sklerotische muskeldystrophie, ein weiterer typus der heredodegeneration erkrankungen des neuromuskularen systems. Z Ges Neurol Psychiat 1930; 126: 171-201.
  • 25. Demir E, Sabatelli P, Allamand V, et al. Mutations in COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy. Am J Hum Genet 2002; 70: 1446-58.
  • 26. Hessle H, Engvall E. Type VI collagen. Studies on its localization, structure, and biosynthetic form with monoclonal antibodies. J. Biol. Chem. 1984; 259: 3955-61.
  • 27. Jimenez-Mallebrera C, Brown SC, Sewry CA, Muntoni F. Congenital muscular dystrophy: molecular and cellular aspects. Cell Mol Life Sci 2005; 62: 809-23.
  • 28. Lisi MT, Cohn RD. Congenital muscular dystrophies: New aspects of an expanding group of disorders. Biochim Biophys Acta 2007; 1772: 159-172.
  • 29. Petit N, Lescure A, Rederstorff M, et al. Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet 2003; 12: 1045-53.
  • 30. Mercuri E, Talim B, Moghadaszadeh B, et al. Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p (RSMD1). Neuromuscul Disord 2002; 12: 631-8.