Sentetik Atıksulardan Elektrooksidasyon Yöntemiyle Renk Gideriminin Araştırılmasında Başlangıç Boyar Madde Kirliliği ve Sıcaklığın Etkisi

Bu çalışmada sentetik atıksulardan elektrooksidasyon yöntemiyle renk giderimi araştırılmıştır. Denemeler kesikli modda gerçekleştirilmiştir. Sistem 5 anot ve 5 katottan oluşturulmuş ve akım doğru akım güç kaynağı ile kontrol edilmiştir. Katot malzemesi olarak paslanmaz çelik katotlar, anot malzemesi olarak karışık metal oksit kaplama (Ti/IrO2/RuO2) anotlar tercih edilmiştir. Metilen mavisi boyar maddesinin kullanıldığı çalışmalarda, renk giderimi üzerine başlangıç boyar madde konsantrasyonu ve atıksu sıcaklığının etkisi incelenmiştir. Sonuçlar artan boyar madde kirliliği ile giderilen boyar madde miktarının azaldığını göstermiştir. Ayrıca artan atıksu sıcaklığının giderim verimini artırmıştır. Başlangıç boyar madde konsantrasyonunun etkisinin incelendiği çalışmalarda giderim verimleri 30 dakikalık deneme süresi sonunda 25 mg/L, 50 mg/L, 100 mg/L ve 250 mg/L için sırasıyla %99,99, %99,31, %96,38 ve %77,89 olarak elde edilmiştir. Sıcaklık etkisinin incelendiği çalışmalar 10°C, 20°C, 30°C ve 40°C için incelenmiş ve elde edilen giderim verimleri sırasıyla %98,22, %99,31, %99,67 ve %99,99 olarak ölçülmüştür. Sonuçlar sentetik atıksulardan renk giderimi için elektrooksidasyon prosesinin uygulanabileceğini göstermektedir

The Effect of Initial Dyestuff Pollution and Temperature on the Investigation of Color Removal from Synthetic Wastewater by Electrooxidation Method

In this study, color removal from synthetic wastewater by electrooxidation method was investigated. The experiments were carried out in batch mode. The system is composed of 5 anodes and 5 cathodes, and the current is controlled by a direct current power supply. Stainless steel cathodes were preferred as the cathode material, and mixed metal oxide coated (Ti/IrO2/RuO2) anodes were preferred as the anode material. The effects of initial dyestuff concentration and wastewater temperature on color removal were investigated using Methylene Blue (MM) dyestuff. The results showed that the amount of dye removed decreased with increasing dye pollution. In addition, the increased wastewater temperature increased the removal efficiency. In studies examining the effect of initial dye concentration, removal efficiencies were 99.99%, 99.31%, 96.38%, and 96.38% for 25 mg/L, 50 mg/L, 100 mg/L, and 250 mg/L, respectively, at the end of the 30-minute trial period. It was obtained as 77.89%. Studies examining the effect of temperature were examined for 10°C, 20°C, 30°C and 40°C and the obtained removal efficiencies were measured as 98.22%, 99.31%, 99.67% and 99.99%, respectively. The results show that the electrooxidation process can be applied for color removal from synthetic wastewaters.

___

  • [1] Y. Feng, L. Yang, J. Liu and B. E. Logan, “Electrochemical technologies for wastewater treatment and resource reclamation”, Environ. Sci. Water Res., vol. 2, pp. 800-831, 2016.
  • [2] N. Azbar, T. Yonar and K. Kestioglu, “Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent”, Chemosphere, vol. 55, pp. 35-43, 2004.
  • [3] S. Alam, N. Rehman, N. ul Amin, L. A. Shah, I. Mian and H. Ullah, “Removal of basic green 5 by carbonaceous adsorbent: Adsorption kinetics”, Bull. Chem. Soc. Ethiop., vol. 31, pp. 411-422, 2017.
  • [4] S. Kaur, S. Rani and R. K. Mahajan, “Adsorption kinetics for the removal of hazardous dye congo red by biowaste materials as adsorbents”, J. Chem., vol. 2013, pp. 628582, 2013.
  • [5] C. Fersi, L. Gzara and M. Dhahbi, “Treatment of textile effluents by membrane technologies”, Desalination, vol. 185, pp. 399-409, 2005.
  • [6] D. M. Yang and J. M. Yuan, “COD and color removal from real dyeing wastewater by ozonation”, Water Environ. Res., vol. 88, pp. 403-407, 2016.
  • [7] R. S. Dhanve, U. U. Shedbalkar and J. P. Jadhav, “Biodegradation of diazo reactive dye navy blue HE2R (Reactive blue 172) by an isolated exiguobacterium sp. RD3”, Biotechnol. Bioprocess Eng., vol. 13, pp. 53-60, 2008.
  • [8] K. Gautam, S. Kamsonlian and S. Kumar, “Removal of reactive red 120 dye from wastewater using electrocoagulation: optimization using multivariate approach, economic analysis, and sludge characterization”, Sep. Sci. Technol., vol. 55, pp. 3412-3426, 2020.
  • [9] M. Ebratkhahan, S. Naghash Hamed, M. Zarei, A. Jafarizad and M. Rostamizadeh, “Removal of neutral red dye via electro-fenton process: a response surface methodology modeling”, Electrocatalysis, vol. 12, pp. 579-594, 2021.
  • [10] G. R. P. Malpass, D. W. Miwa, D. A. Mortari, S. A. S. Machado and A. J. Motheo, “Decolorisation of real textile waste using electrochemical techniques: Effect of the chloride concentration”, Water Res., vol. 41, pp. 2969-2977, 2007.
  • [11] B. Farizoğlu, B. A. Fil, S. Uzuner, S. Bıçakcı, E. Er and E. N. Kara, “Reactive black 5 removal with electro-oxidation method using Ti/IrO2/RuO2 anode and stainless steel cathode”, Int. J. Electrochem. Sci., vol. 13, pp. 3288-3296, 2018.
  • [12] J. Wang, T. Zheng, H. Liu, G. Wang, Y. Zhang and C. Cai, “Direct and indirect electrochemical oxidation of ethanethiol on grey cast iron anode in alkaline solution”, Electrochim. Acta, vol. 356, pp. 136706, 2020.
  • [13]H. Asghar, T. Ahmad, S. Hussain and H. Sattar, “Electrochemical oxidation of methylene blue in aqueous solution”, Int. J. Chem. Eng. Appl., vol. 6, pp. 352-355, 2015.
  • [14] N. H. Jawad and S. T. Najim, “Removal of methylene blue by direct electrochemical oxidation method using a graphite anode”, in IOP Conference Series: Materials Science and Engineering, pp. 012023, 2018.
  • [15] M. Panizza and G. Cerisola, “Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation”, J. Hazard. Mater., vol. 153, pp. 83-88, 2008.
  • [16] B. K. Körbahti and K. M. Turan, “Evaluation of energy consumption in electrochemical oxidation of acid violet 7 textile dye using Pt/Ir electrodes”, J. Turk. Chem. Soc., Sect. A: Chem., vol. 3, pp. 75-92, 2017.
  • [17] H. Xu and W. Yan, "Decolorization of azo dyes Wastewater by Electrochemical Oxidation," in 3rd International Conference on Bioinformatics and Biomedical Engineering, pp. 1-4, 2009.
  • [18] M. Zhou and J. He, “Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO2 electrode”, J. Hazard. Mater., vol. 153, pp. 357-363, 2008.
  • [19] A. Dalvand, M. Gholami, A. Joneidi and N. M. Mahmoodi, “Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process”, Clean (Weinh), vol. 39, pp. 665- 672, 2011.
  • [20] D. A. Carvalho, J. H. Bezerra Rocha, N. S. Fernandes, D. R. Da Silva and C. A. MartínezHuitle, “Application of electrochemical oxidation as alternative for removing methyl green dye from aqueous solutions”, Lat. Am. Appl. Res., vol. 41, pp.127-133, 2011
Türk Mühendislik Araştırma ve Eğitimi Dergisi-Cover
  • ISSN: 2822-3454
  • Başlangıç: 2022
  • Yayıncı: Türk Eğitim-Sen