Çilek Tohumundan Soğuk Sıkımla Elde Edilen Yağların Biyoaktif Bileşenleri ve Yağ Asidi Kompozisyonu

Çilek çekirdeği yağının (SSO) yağ asidi kompozisyonunu ve sterol içeriği belirlenmiştir. Yağ asidi kompozisyonu ve sterol içeriği, gaz kromatografisi (GC) ile analiz edilmiş, tokoferol ve gliserid içeriği, bir ters faz kolonu ile donatılmış yüksek performanslı sıvı kromatografisi (HPLC) cihazı ile belirlenmiştir. Çilek çekirdeği yağının fizikokimyasal özellikleri de incelenmiştir. Sonuçlar, çilek çekirdeği yağının esas olarak oleik asit (%15.58), linoleik asit (%42.54) ve linolenik asit (%33.48) gibi doymamış yağ asitlerinden (%92.36) oluştuğunu göstermiştir. Çilek çekirdeği yağındaki toplam sterol bileşenlerinin 932.00 mg/kg olduğu ve baskın sterolün β-sitosterol (%81.04) olduğu belirlenmiştir. Toplam β-sterol içeriği %83.84 olarak tespit edilmiştir. SSO'da baskın triaçilgliserol (TAG) moleküllerinin sırasıyla OLnL (%13.99), LLL (%8.05) ve PLnL (%4.41) olduğu belirlenmiştir. Ayrıca, çilek çekirdeği yağının fenolik bileşikler, tokoferoller ve steroller gibi diğer biyoaktif bileşikler açısından da zengin olduğu tespit edilmiştir.

Fatty Acids Composition and Bioactive Substances of Cold Pressed Oils from Strawberry Seed

Fatty acid and sterol compositions of strawberry seed oil (SSO) were determined. The fatty acid and sterol compositions were analyzed by GC. Tocols, tocotrienols and glycerides composition were designated on a high performance HPLC equipped with a reversed-phase HPLC columns. The physicochemical characteristics of strawberry seed oil were also studied. Our results showed that the strawberry seed oil was composed mainly of unsaturated fatty acids (92.36%), such as oleic acid (15.58%), linoleic acid (42.54%) and linolenic acid (33.48%). The total sterol constituents in strawberry seed oil were determined as 932.00 mg/kg and the major sterol was β-sitosterol (81.04%). The total β-sterol composition was 83.84%. Dominant triacylglycerol (TAG) molecules in SSO were determined to be OLnL (13.99%), LLL (8.05%) and PLnL (4.41%), respectively. Furthermore, the strawberry seed oil was rich in other bioactive compounds, such as phenolic compounds, tocopherols and sterols.

___

  • [1] V. Van Hoed, I. Barbouche, N. De Clercq, K. Dewettinck, M. Slah, E. Leber and R. Verhé, “Influence of filtering of cold pressed berry seed oils on their antioxidant profile and quality characteristics”, Food Chem. 127, pp. 1848-1855, 2011.
  • [2] R. M. Sharma and R. Yamdagni, “Strawberries: production, postharvest management and protection”, CRC Press, 2019.
  • [3] M. T. Ariza, P. Reboredo-Rodríguez, L. Mazzoni, T. Y. Forbes-Hernández, F. Giampieri, S. Afrin, M. Gasparrini, C. Soria, E. Martínez-Ferri, M. Battino and B. Mezzetti, “Strawberry achenes are an important source of bioactive compounds for human health”, Int. J. Mol. Sci. 17, pp. 1-14, 2016.
  • [4] X. Jin, S. Song, J. Wang, Q. Zhang, F. Qiu and F. Zhao, “Tiliroside, the major component of agrimonia pilosa Ledeb ethanol extract, inhibits MAPK/JNK/p38-mediated inflammation in lipopolysaccharide-activated RAW 264.7 macrophages”, Exp. Ther. Med. 12, pp. 499-505, 2016.
  • [5] S. Takeda, H. Shimoda, T. Takarada and G. Imokawa, “Strawberry seed extract and its major component, tiliroside, promote ceramide synthesis in the stratum corneum of human epidermal equivalents”, PLoS One. 13 pp. 1-18, 2018.
  • [6] H. Matsuda, K. Ninomiya, H. Shimoda and M. Yoshikawa, “Hepatoprotective principles from the flowers of tilia argentea (linden): Structure requirements of tiliroside and mechanisms of action”, Bioorganic Med. Chem. 10, pp. 707- 712, 2002.
  • [7] T. Goto, M. Horita, H. Nagai, A. Nagatomo, N. Nishida, Y. Matsuura and S. Nagaoka, “Tiliroside, a glycosidic flavonoid, inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract”, Mol. Nutr. Food Res. 56, pp. 435-445, 2012.
  • [8] A. Jurgoński, B. Fotschki and J. Jus̈kiewicz, “Dietary strawberry seed oil affects metabolite formation in the distal intestine and ameliorates lipid metabolism in rats fed an obesogenic diet”, Food Nutr. Res. 59, 2015.
  • [9] R. Luo, C. Zhang and G. Chan, “Fatty acid compositions of strawberry seed oil”, China Oils Fats. 31, pp. 68-69, 2006.
  • [10] N. da Silva and A. C. Jorge, “Bioactive compounds of oils extracted from fruits seeds obtained from agroindustrial waste”, Eur. J. Lipid Sci. Technol. 119, pp. 1-5, 2017.
  • [11] R. Farhoosh, M. H. Tavassoli-Kafrani and A. Sharif, “Antioxidant activity of the fractions separated from the unsaponifiable matter of bene hull oil”, Food Chem. 126, pp. 583-589, 2011.
  • [12] M. F. Ramadan, L. W. Kroh and J-T. Mörsel, “Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions”, J. Agric. Food Chem. 51, pp. 6961-6969, 2003.
  • [13] C. Re, R. Pellegrini, N. Proteggente, A. Pannala, A. Yang and M. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay”, Free Radic. Biol. Med. 26, pp. 1231-1237, 1999.
  • [14] J. A. Singleton and V. L., Rossi, “Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents”, Am. J. Enol. Vitic. 16, pp. 144-158, 1965.
  • [15] P. F. Surai, R. C. Noble and B. K. Speake, “Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during development of the chick embryo”, Biochim. Biophys. Acta - Lipids Lipid Metab. 1304, pp. 1-10, 1996.
  • [16] O. Beyhan, A. Ozcan, H. Ozcan, E. Kafkas, S. Kafkas, M. Sutyemez and S. Ercisli, “Fat, fatty acids and tocopherol content of several walnut genotypes”, Not. Bot. Horti Agrobot. ClujNapoca. 45, pp. 437-441, 2017.
  • [17] TSE, “TS EN ISO 12966-2 Animal and vegetable fats and oils - Gas chromatography of fatty acid methyl esters - Part 2: Preparation of methyl esters of fatty acids”, Ankara/Turkey, 2015.
  • [18] TSE, “TS EN ISO 12966-4 Animal and vegetable fats and oils - Gas chromatography of fatty acid methyl esters - Part 4: Determination by capillary gas chromatography”, Ankara/Turkey, 2015.
  • [19] COI, “Method of analysis determination of the difference between actual and theoretical content of triacyglycerols with ECN 42.”, International Olive Council, COI/T.20/Doc. No 20 /Rev. 4, Madrid-Spain, 2017.
  • [20] W. Jahouach-Rabai, K. Essid, M. Trabelsi and M. Frika, “Effects of neutralization and bleachıng process on fatty acid and trıglyceride compositions of pomace-olıve oil”, J. harmonized res. appl. sci., 2, 4, pp. 257-270, 2014.
  • [21] E. Christopoulou, M. Lazaraki, M. Komaitis and K. Kaselimis, “Effectiveness of determinations of fatty acids and triglycerides for the detection of adulteration of olive oils with vegetable oils”, Food Chem. 84, pp. 463- 474, 2004.
  • [22] TSE, “TS EN ISO 12228-1: Determination of individual and total sterol compositions-Gas chromatographic method-Part 1: Animal and vegetable fats and oils”, Ankara/Turkey, 2014.
  • [23] S. Mildner-Szkudlarz, M. Różańska, A. Siger, P. Ł. Kowalczewski and M. Rudzińska, “Changes in chemical composition and oxidative stability of cold-pressed oils obtained from by-product roasted berry seeds”, Lwt. 111, pp. 541-547, 2019.
  • [24] C. L. Burnett, M. M. Fiume, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks, R. C. Shank, T. J. Slaga, P. W. Snyder and F. Alan Andersen, “Safety assessment of plant-derived fatty acid oils”, Int. J. Toxicol. 36, pp. 51S-129S, 2017.
  • [25] M. Pieszka and B. Tombarkiewicz, “Effect of bioactive substances found in rapeseed, raspberry and strawberry seed oils on blood lipid profile and selected parameters of oxidative status in rats”, 36, 3, pp. 1055-1062, 2013.
  • [26] K. Aaby, G. Skrede and R. E. Wrolstad, “Phenolic composition and antioxidant activities in flesh and achenes of strawberries (fragaria ananassa)”, J. Agric. Food Chem. 18;(53)10, pp. 4032-4040, 2005.
  • [27] K. Aaby, R. E. Wrolstad, D. Ekeberg and G. Skrede, “Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage”, J. Agric. Food Chem. 55(13), pp. 5156-5166, 2007.
  • [28] M. R. Williner, M. E. Pirovani and D. R. Güemes, “Ellagic acid content in strawberries of different cultivars and ripening stages”, J. Sci. Food Agric. 83(8), pp. 842-845, 2003.
  • [29] K. Grzelak-Błaszczyk, E. Karlińska, K. Grzęda, E. Rój and K. Kołodziejczyk, “Defatted strawberry seeds as a source of phenolics, dietary fiber and minerals”, LWT-Food Sci. Technol. 84, pp. 18-22, 2017.
  • [30] J. Cheel, C. Theoduloz, J. A. Rodríguez, P. D. S. Caligari and G. Schmeda-Hirschmann, “Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. x ananassa cv. Chandler”, Food Chem. 102(1), pp. 36-44, 2007.
  • [31] O. Altan and A. Kola, “Oil processing technolgy (yağ işleme technology)”, Bizim Büro Publishing Inc., Ankara/Turkey, 2009.
  • [32] E. Sikora, P. Michorczyk, M. Olszańska and J. Ogonowski, “Supercritical CO2 extract from strawberry seeds as a valuable component of mild cleansing compositions”, Int. J. Cosmet. Sci. 37, pp. 574-578, 2015.
  • [33] M. Bryszak, M. Szumacher-Strabel, M. ElSherbiny, A. Stochmal, W. Oleszek, E. Roj, A. K. Patra and A. Cieslak, “Effects of berry seed residues on ruminal fermentation, methane concentration, milk production, and fatty acid proportions in the rumen and milk of dairy cows”, J. Dairy Sci. 102, pp. 1257-1273, 2019.
  • [34] V. Van Hoed, N. De Clercq, C. Echim, M. Andjelkovic, E. Leber, K. Dewettinck and R. VerhÉ, “Berry seeds: A source of specialty oils with high content of bioactives and nutritional value”, J. Food Lipids. 16, pp. 33-49, 2009.
  • [35] O. Krasodomska and C. Jungnickel, “Viability of fruit seed oil O/W emulsions in personal care products, Colloids Surfaces A”, Physicochem. Eng. Asp. 481, pp. 468-475, 2015.
  • [36] M. Pieszka, W. Migdał, R. Gąsior, M. Rudzińska, D. Bederska-ŁOjewska, M. Pieszka and P. Szczurek, “Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: A health implication”, J. Chem. pp. 1-8, 2015.
  • [37] M. Pieszka, B. Tombarkiewicz, A. Roman, W. Migdał and J. Niedziółka, “Effect of bioactive substances found in rapeseed, raspberry and strawberry seed oils on blood lipid profile and selected parameters of oxidative status in rats”, Environ. Toxicol. Pharmacol. 36, pp. 1055-1062, 2013.
  • [38] A. Šućurović, N. Vukelić, L. Ignjatović, I. Brčeski and D. Jovanović, “Physical-chemical characteristics and oxidative stability of oil obtained from lyophilized raspberry seed”, Eur. J. Lipid Sci. Technol. 111(11), pp. 1133- 1141, 2009.
  • [39] B. Yang, M. Ahotupa, P. Määttä and H. Kallio, “Composition and antioxidative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries”, Food Res. Int. 44(7), pp. 2009-2017, 2011.
  • [40] S. Mildner-Szkudlarz, M. Różańska, A. Siger, P. Ł. Kowalczewski and M. Rudzińska, “Changes in chemical composition and oxidative stability of cold-pressed oils obtained from by-product roasted berry seeds”, Lwt. 111, pp. 541-547, 2019.
  • [41] A. Jurgoński, J. Koza, D.-T. Chu and P. M. Opyd, “Berry seed oils as potential cardioprotective food supplements”, Nutrire. 43, pp. 1-6, 2018.
  • [42] T. Karupaiah and K. Sundram, “Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications”, Nutr. Metab. 4, pp. 1-17, 2007.
Türk Mühendislik Araştırma ve Eğitimi Dergisi-Cover
  • ISSN: 2822-3454
  • Başlangıç: 2022
  • Yayıncı: Türk Eğitim-Sen