JİNEKOLOJİK TÜMÖRLERDE ÜÇ BOYUTLU KONFORMAL RADYOTERAPİ JİNEKOLOJİK TÜMÖRLERDE RADYOTERAPİ

Radyoterapi, jinekolojik tümörlerin gerek primer gerekse postoperatif adjuvant tedavi olarak küratif tedavinin önemli bir parçasıdır. Bu gaye ile uygulanacak radyoterapi volümü primer tümör veya tümör yatağı ile ilgili bölgesel lenf nodlarını kapsamalıdır. Tedavi başarısı açısından sağkalım ve toksisite kadar yaşam kalitesi de önemli bir kriterdir. Teknolojik gelişmelerin radyoterapi üzerine yansıması ve 3 boyutlu tedavilere geçiş ile arzulanan sonuçlara ulaşma oranları artmıştır. Yapılan birçok çalışma ile konvansiyonel yöntemlerde kemik referansların kullanılması ile gerekli tedavi alanlarının kapsanmadığı gösterilmiştir. Hedef hacmin daha iyi saptanması, daha uygun doz dağılımı, daha az erken ve geç yan etki, tümörde daha yüksek doza ulaşma, daha iyi lokal kontrol, daha iyi yaşam kalitesi ve sağkalım gereksinimleri 3 boyutlu konformal radyoterapinin güncel tedavi stratejisi olmasını zorunlu kılmıştır. İyi tasarlanmış bir simülasyon işlemi sonrasında hedef hacimler ve risk altındaki organlar titizlikle belirlenmelidir. Planlamada kullanılan hedef hacimler Uluslararası Radyasyon Birim ve Ölçümleri Komisyonu (International Commission on Radiation Units and Measurement-ICRU)’nun 50 ve 62 numaralı raporlarına göre düzenlenmektedir. Anatomik yapıları daha net ayırarak planlamaya yardımcı olması amacı ile tedavi pozisyonunda alınan dozimetrik magnetik rezonans (MR) görüntüleri rutin olarak kullanılmalıdır. Ayrıca gelecekte BT-MR görüntü birleştirme işleminin daha yaygın kullanılabilme imkânı olabileceği ümit edilmektedir. Sonrasında planlama sistemleri üzerinden tedavi alanlarının ve dozlarının belirlenmesi ile güvenilir bir biçimde radyoterapi uygulanabilmektedir. Sonuç olarak tüm gelişmiş ülkelerde ve ülkemizdeki büyük merkezde 3 boyutlu konformal tedavi standart olarak kullanılmaktadır. Ekip çalışması ile tüm aşamalar titizlikle yapılmalıdır ve her aşamanın denetimi ile tedavi kalitesinin arttırılacağı unutulmamalıdır

THREE DIMENSIONAL CONFORMAL RADIOTHERAPY AT GYNECOLOGICAL MALIGNANCIES

Radiotherapy is an important part of both primary and postoperative adjuvant treatments of gynecological tumors. With this goal radiotherapy volume should include the primary tumor or tumor bed and regional lymph nodes. Quality of life is also important criteria such as survival and toxicity for treatment success. The rate of desired results have increased with reflection of tecnological developments on radiotherapy and the passage of 3-dimensional treatments. Many studies have shown that the use of bone references in conventional methods are not covered the necessary treatment areas. Three-dimensional conformal radiotherapy became the current treatment strategy for a better determination of the target volume, more convenient dose distribution, less early and late side-effects, higher tumor dose ,better local control ,better quality of life and survival. After a well-designed simulation, target volumes and organs at risk should be determined carefully. International Commission on Radiation Units and Measurements’s 50 and 62 reports are used for arranged planning target volumes. The dosimetric magnetic resonance images in treatment position are routinely used to help planning by seperation the anatomical structures more clearly. After that, the radiotherapy can be applied in a reliable manner by the determination of treatment areas and doses at planning systems. As a result, three-dimensional conformal radiotherapy is used as standard treatment in all developed countries and the great centers of our country. All steps should be done carefully with teamwork and it should be noted that the quality of treatment will be increased with the control of each stages

___

  • 1. Withers HR, Peters LJ, Taylor JMG. Dose-response relationship for radiation therapy for subclinical disease. Int J Radiat Oncol Biol Phys 1995;31:353-359.
  • 2. Zunino S, Rosato O, Lucino S, Jauregui E, Rossi L, Venencia D. Anatomic study of the pelvis in the carcinoma of the uterine cervix as related to the box technique.. Int J Radiat Oncol Biol Phys 1999;44:53-59.
  • 3. Kim RY, McGinnis S, Spencer SA, Meredith RF, Jennelle RL, Salter MM. Conventional four-fi eld pelvic radiotherapy technique without computer tomography-treatment planning in cancer of the cervix: Potential geographic miss and its impact on pelvic control.. Int J Radiat Oncol Biol Phys 1995;31:109-112.
  • 4. Greer BE, Koch WJ, Figge DC, Shy KK, Tamimi HK. Gynecologic radiotherapy fi elds defi ned by intraoperative measurements. Gynecol Oncol 1990;38:421-424.
  • 5. McAlpine J, Schlaerth JB, Lim P, Chen D, Eisenkop SM, Spirtos MM. Radiation fi elds in gynecologic oncology: Correlation of soft tissue (surgical) to radiologic landmarks. Gynecol Oncol 2004;92:25-30.
  • 6. Pendlebury SC, Cahill S, Crandon AJ, Bull CA. Role of bipedal lymphangiogram in radiation treatment planning for cervix cancer.. Int J Radiat Oncol Biol Phys 1993;27:959-962.
  • 7. Bonin SR, Lanciano RM, Corn BW, Hogan WM, Hartz WH, Hanks GE. Bony landmarks are not adequate substitute for lymphangiography in defi ning pelvic lymph node location for the treatment of cervical cancer with radiotherapy.. Int J Radiat Oncol Biol Phys 1996;34:167-172
  • 8. Chao KS, Lin M. Lymphangiogram-assisted lymph node target delineation for patients with gynecologic malignancies.. Int J Radiat Oncol Biol Phys 2002;54:1147-1152.
  • 9. Finlay MH, Ackerman I, Tirona RG, Hamilton P, Barbera L, Thomas G. Use of CT simulation for treatment of cervical cancer to assess the adequacy of lymph node coverage of conventional pelvic fi elds based on bony landmarks.. Int J Radiat Oncol Biol Phys 2006;54:205-209.
  • 10. ICRU Report 50: Prescribing, recording and reporting photon beam therapy, Bethesda, MD: International Commission on Radiation Units and Measurements, 1993.
  • 11. ICRU Report 62: Prescribing, recording and reporting photon beam therapy, (Supplement to ICRU Report 50). Bethesda, MD: International Commission on Radiation Units and Measurements, 1999.
  • 12. Gregoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48:68S-77S.
  • 13. Thomas L, Chacon B, Kind M, Lasbareilles O, Muyldermans P, Chemin A, Le Treut A, Pigneux J, Kantor G. Magnetic resonance imaging in the treatment planning of radiation therapy in carcinoma of the cervix treated with the four-fi eld pelvic technique. Int J Radiat Oncol Biol Phys 1997;37:827-832.
  • 14. Barillot I, Reynaud-Bougnoux A. The use of MRI in planning radiotherapy for gynecological tumors. Cancer Imaging 2006;6:100-106.
  • 15. Lai CH, Yen TC, Chang TC. Positron emission tomography imaging for gynecologic malignancy. Curr Opin Obstetr Gynecol 2007;19:37-41.
  • 16. Yen TC, Lai CH. Positron emission tomography in gynecologic cancer. Semin Nucl Med 2006;36:93-104.
  • 17. Taylor A, Rockall AG, Reznek RH, Powell ME. Mapping pelvic lymph nodes: Guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2005;63:1604-1612.
  • 18. Small W, Mell LK, Anderson P, Creutzberg C, De Los Santos J, Gaffney D, Jhingran A, Portelance L, Schefter T, Iyer R, Varia M, Winter K, Mundt AJ. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer.. Int J Radiat Oncol Biol Phys 2008;71:428-434.
  • 19. Lim K, Small W, Portelance L, Creutzberg C, JürgenliemkSchulz I, Mundt A, Mell LK, Mayr N, Viswanathan A, Jhingran A, Erickson B, De Los Santos J, Gaffney D, Yashar C, Beriwal S, Wolfson A, Taylor A, Bosch W, Naqa I, Fyles A. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the defi nitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys 2010, article in press. Doi:10.1016/j.ijrobp.2009.10.075
  • 20. Höckel M, Horn LC, Fritsch H. Association between the mesenchymal compartment of uterovaginal organogenesis and local tumor control spread in stage IB-IIB cervical carcinoma: A prospective study. Lancet Oncol 2005;6:751-756.
  • 21. Diaz JP, Sonoda Y, Leitao MM, Zivanovic O, Brown CL, Chi DS, Barakat RR, Abu-Rustum NR. Oncologic outcome of fertility-sparing radical trachelectomy versus radical hysterectomy for stage IB1 cervical carcinoma. Gynecol Oncol 2008;111:255-260.
  • 22. Hertel H, Köhler C, Grund D, Hillemans P, Possover M, Michels W, Scheider A. Radical vaginal trachelectomy (RTV) combined with laparoscopic pelvic lymphadenectomy: Prospective multicenter study of 100 patients with early cervical cancer. Gynecol Oncol 2006;103:506-511.
  • 23. Buchali A, Koswig S, Dinges S, Rosenthal P, Salk J, Lackner G, Böhmer D, Schlenger L, Budach V. Impact of the fi lling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynecological cancer. Radiother Oncol 1999;52:29-34.
  • 24. Emami B, Lyman J, Brown A, Coia L, Goiten M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109-122.
  • 25. Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, Ten Haken RK, Yorke ED. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): An introduction to the scientifi c issues. Int J Radiat Oncol Biol Phys 2010:3:S3-S9.
  • 26. Kavanaghi BD, Pan CC, Dawson LA, Das SK, Li XA, Ten Haken RK, Miften M. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys 2010:3:S101-S107.