Yumurtalık kanserinde hedefe yönelik tedavi stratejilerinde moleküler mekanizmaların rolü

Kanser, kontrol edilemeyen hücre bölünmeleri sonucunda doku ve organlarda meydana gelen hasarların bütünüdür. Farklı görülme sıklığı ve ölüm oranları ile ilişkili birçok kanser türü vardır. Yumurtalık kanseri dünya genelinde yaygınlık olarak yedinci sırada gelmekte olup kansere bağlı ölüm nedeni olarak beşinci sırada gelmektedir. Kanser türlerinin kendi içinde standart tedavi yöntemleri olmasına rağmen bireyler bu tedavi yöntemlerine farklı cevaplar vermektedir. Geliştirilen tüm tedavi stratejilerine rağmen yumurtalık kanseri hala yüksek ölüm oranına sahiptir. Bu sebeple günümüzdeki tedavi yöntemlerinin etkinliğini engelleyen ilaca karşı oluşan direnç mekanizmalarını kavramak, yeni tedavi yöntemleri geliştirmek ve moleküler karakterizasyonunu belirlemek oldukça önemlidir. Son yıllarda oldukça gündeme gelen yumurtalık kanserinde hedefe yönelik terapi stratejileri geliştirilmesi kapsamında yolak analizleri üzerine odaklanılmıştır. Bu kapsamda onko- proteinlerin WNT, Hedgehog ve NOTCH sinyal yolağı gibi yolaklardaki etkinlik durumları değerlendirilmiştir. Ayrıca, son yıllarda etkinliği belirlenmiş Nanog proteini ve fotodinamik tedavi seçeneklerinin yumurtalık kanseri üzerindeki yenilikçi tedavi etkinliği detaylandırılmıştır. Yumurtalık kanseri tedavisinde mevcut ve geliştirilmesihâlâ devam eden tedavi yöntemlerinin moleküler karakterizasyonlarının aydınlatılması ile bu hastalıktan şikayeti olan hastaların iyileşme süreçlerinin kalitesinin artırılması mümkün hâle gelebilecektir.

The role of molecular mechanisms in targeted therapy strategies in ovarian cancer

Cancer is a disease that occurs in tissues and organs as a result of uncontrolled cell divisions. There are numerous types of cancer related with different frequencies and mortality rate. Ovarian cancer is the seventh common type of cancer worldwide and is the fifth cause of cancer-related death. Although there are standard treatment methods for cancer types, people give different responses to these treatment methods. In spite of all the treatment strategy developed, ovarian cancer still has a high mortality rate. For this reason, it is very important to better understand the drug resistance mechanisms that prevent the effecttiveness of today’s treatment methods, to develop new treatment methods and the determination of molecular characterization. In recent years, research has focused on methods containing pathway analysis within the scope of developing targeted therapy strategies for ovarian cancer. In this context, the activity status of onco-proteins in pathways such as WNT, Hedgehog and NOTCH signaling pathways were evaluated. In addition, the innovative treatment efficiency of Nanog protein and photodynamic therapy options on ovarian cancer has been detailed in recent years. It will be possible to increase the quality of the healing process of patients suffering from this disease by enlightening the molecular characterizations of the treatment methods that are available and still being developed in the treatment of ovarian cancer.

___

  • 1. Roy PS, Saikia BJ. Cancer and cure: a critical analysis. Indian J Cancer, 2016; 53 (3): 441-2.
  • 2. Torre LA, Siegel RG, Ward EM, Jemal A. global cancer incidence and mortality rates and trends- -an update. Cancer Epidemiol Biomarkers Prev, 2016; 25 (1): 16-27.
  • 3. Ottevanger, PB. Ovarian cancer stem cells more questions than answers. Semin Cancer Biol, 2017; 44: 67-71.
  • 4. Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SRK, et al. Ovarian cancer stem cells and targeted therapy. J Ovarian Res, 2019; 12 (1): 120.
  • 5. Türkiye Kanser İstatistikleri, 2010. https:// hsgm.saglik.gov.tr/tr/kanser-istatistikleri/ yillar/2010-yili-kanser istatistikleri.html, (Erişim Tarihi: 23.02.2020).
  • 6. Chen VW, Ruiz B, Killeen JL, Coté TR, Wu XC, Correa CN. Pathology and classification of ovarian tumors. Cancer, 2003; 97 (10): 2631-42.
  • 7. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer. Cancer Biol Med, 2017; 14 (1):9-32.
  • 8. Sankaranarayanan R, Ferlay J. Worldwide burden of gynaecological cancer: the size of the problem. Best Pract Res Clin Obstet Gynaecol, 2006; 20 (2): 207-25.
  • 9. Reavis HD, Drapkin R. The tubal epigenome an emerging target for ovarian cancer. Pharmacol Therap, 2020; 210: 107524.
  • 10. Koshiyama M, Konishi I, Mandai M, Komatsu T, Yamamoto S, Nanbu K, et al. Immunohistochemical analysis of p53 protein and 72 kDa heat shock protein (HSP72) expression in ovarian carcinomas. Correlation with clinicopathology and sex steroid receptor status. Virchows Arch, 1995; 425 (6): 603-9.
  • 11. Santin AD, Zhan F, Bellone S, Palmieri M, Cane S, Bignotti E, et al. Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy. Int J Cancer, 2004; 112 (1): 14-25.
  • 12. Salani R, Kurman RJ, Giuntoli R, Gardner G, Bristow R, Wang TL, et al. Assessment of TP53 mutation using purified tissue samples of ovarian serous carcinomas reveals a higher mutation rate than previously reported and does not correlate with drug resistance. Int J Gynecol Cancer, 2008; 18 (3): 487-91.
  • 13. Cho KR, Shih IM. Ovarian cancer. Annu Rev Pathol, 2009; 4: 287-313.
  • 14. Koshiyama M, Matsumura N, Konishi I. Subtypes of ovarian cancer and ovarian cancer screening. Diagnostics, 2017; 7 (1): 12.
  • 15. Baykara O. Current modalities in treatment of cancer. Balıkesir Health Sci J, 2016; 5: 154-65.
  • 16. Johnson SW, Laub PB, Beesley JS, Ozols RF, Hamilton TC. Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Res, 1997; 57 (5): 850-6.
  • 17. Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S, et al. Ovarian cancer: current status and strategies for improving therapeutic outcomes. Cancer Med, 2019; 8 (16): 7018-31.
  • 18. Januchowski R, Sterzyńska K, Zaorska K, Sosińska P, Klejewski A, Brazert M, et al. Analysis of MDR genes expression and cross-resistance in eight drug resistant ovarian cancer cell lines. J Ovarian Res, 2016; 9 (1): 65.
  • 19. Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist, 2003; 8 (5): 411-24.
  • 20. Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA, 2002; 99 (22): 14298- 302.
  • 21. Holzer AK, Manorek GH, Howell SB. Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol Pharmacol, 2006; 70 (4): 1390-4.
  • 22. Howell SB, Safaei R, Larson CA, Sailor MJ. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol, 2010; 77 (6): 887-94.
  • 23. Kilari D, Guancial E, Kim ES. Role of copper transporters in platinum resistance. World J Clin Oncol, 2016; 7 (1): 106-13.
  • 24. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 2010; 141 (1): 69-80.
  • 25. Chang X, Monitto CL, Demokan S, Kim MS, Chang SS, Zhong X, et al. Identification of hypermethylated genes associated with cisplatin resistance in human cancers. Cancer Res, 2010; 70 (7): 2870-9.
  • 26. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002; 2 (6): 442-54.
  • 27. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell, 2004; 116(2): 205-19.
  • 28. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev, 2007; 87(1): 99-163.
  • 29. Smaili SS. Mitochondria, calcium and pro- apoptotic proteins as mediators in cell death signaling. Braz J Med Biol Res, 2003; 36(2): 183- 90.
  • 30. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002; 2(6): 442-54.
  • 31. Loriot Y. Radiosensitization by a novel Bcl-2 and Bcl-XL inhibitor S44563 in small-cell lung cancer. Cell Death Dise, 2014; 5(9): e1423.
  • 32. Eliopoulos AG. The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene, 1995; 11(7): 1217-28.
  • 33. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007; 26(9): 1324-37.
  • 34. Wang H. Small-molecule inhibitor of Bcl-2 (TW- 37) suppresses growth and enhances cisplatin- induced apoptosis in ovarian cancer cells. J Ovarian Res, 2015; 8.
  • 35. Zeitlin BD, Zeitlin IJ, Nör JE. Expanding circle of inhibition: small-molecule inhibitors of Bcl-2 as anticancer cell and antiangiogenic agents. J Clin Oncol, 2008; 26(25): 4180-88.
  • 36. Lengyel E. C-Met overexpression in node- positive breast cancer identifies patients with poor clinical outcome independent of Her2/ neu. Int J Cancer, 2005; 113(4): 678-82.
  • 37. Di Renzo, MF. Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer, 1994; 58(5): 658-62.
  • 38. Gherardi E. Targeting MET in cancer: rationale and progress. Nat Rev Cancer, 2012; 12(2): 89- 103.
  • 39. De Bacco F. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst, 2011; 103(8): 645-61.
  • 40. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol, 2003; 129 (4): 199-221.
  • 41. Jager M, Dayraud C, Mialot A, Quéinnec E, Guyader H, Manuel M. Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PloS One, 2013; 8 (12): e84363.
  • 42. Lien WH, Fuchs E. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes Dev, 2014; 28 (14): 1517-32.
  • 43. de Lau WBM, Snel B, Clevers HC. The R-spondin protein family. Genome Biol, 2012; 13 (3): 242.
  • 44. Chartier C, Raval J, Axelrod F, Bond C, Cain J, Hoskins CD, et al. Therapeutic targeting of tumor-derived r-spondin attenuates β-catenin signaling and tumorigenesis in multiple cancer types. Cancer Res, 2016; 76 (3): 713-23.
  • 45. Teeuwssen M, Fodde R. Wnt signaling i n ovarian cancer stemness, EMT and therapy resistance. J Clin Med, 2019; 8 (10): 1658.
  • 46. Boone JD, Arend RC, Johnston BE, Cooper SJ, Gilchrist SA, Oelschlager DK, et al. Targeting the Wnt/β-catenin pathway in primary ovarian cancer with the porcupine inhibitor WNT974. Lab Invest, 2016 ;96 (2): 249-59.
  • 47. Moore KN, Gunderson CC, Sabbatini P, Mcmeekin DS, Smaldone GM, Burger RA, et al. A phase 1b dose escalation study of ipafricept (OMP54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer. Gynecol Oncol, 2019; 154 (2): 294-301.
  • 48. Harb J, Lin PJ, Hao J. Recent development of wnt signaling pathway inhibitors for cancer therapeutics. Curr Oncol Rep, 2019; 21 (2): 12.
  • 49. Gao L, Zheng M, Guo Q, Nie X, Li X, Hao Y, et al. Downregulation of Rab23 inhibits proliferation, invasion, and metastasis of human ovarian cancer. Int J Biochem Cell Biol, 2019; 116: 105617.
  • 50. Eggenschwiler JT, Espinoza E, Anderson KV. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature, 2001; 412 (6843): 194-8.
  • 51. Yağcı E, Güneş HV. Notch Sinyal Yolağı ve Karsinogenez. Osmangazi J Med, 2017; 39(1): 109-16.
  • 52. Zasada MB, Piecuch A, Dittfeld A, Mielańczyk L, Michalski M, Wyrobiec G, et al. Notch signalling pathway as an oncogenic factor involved in cancer development. Contemp Oncol, 2016; 20 (4): 267-272.
  • 53. Ohishi K, Finney BV, Flowers D, Anasetti C, Myerson D, Bernstein ID. Monocytes express high amounts of Notch and undergo cytokine specific apoptosis following interaction with the Notch ligand, Delta-1. Blood, 2000; 95 (9): 2847-54.
  • 54. Dufraine J, Funahashi Y, Kitajewski J. Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 2008; 27 (38): 5132-7.
  • 55. Harrison H, Simões BM, Rogerson L, Howell SJ, Landberg G, Clarke RB. Oestrogen increases the activity of oestrogen receptor negative breast cancer stem cells through paracrine EGFR and Notch signalling. Breast Canc Res, 2013; 15 (2): R21.
  • 56. Iqbal W, Alkarim S, Alhejin A, Mukhtar H, Saini KS. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget, 2016; 7 (46): 76337- 353.
  • 57. Mahalaxmi I, Devi SM, Kaavya J, Arul N, Balachandar V, Santhy KS. New insight into NANOG: A novel therapeutic target for ovarian cancer (OC). Europ J Pharmacol, 2019; 852: 51- 7.
Türk Hijyen ve Deneysel Biyoloji Dergisi-Cover
  • ISSN: 0377-9777
  • Başlangıç: 1938
  • Yayıncı: Türkiye Halk Sağlığı Kurumu
Sayıdaki Diğer Makaleler

Klinik vakalardan izole edilen metisilin dirençli Staphylococcus aureus (MRSA) suşlarına siprofloksasin ve yeşil çay ekstraktının sinerjik antibakteriyel etkisinin araştırılması

Yalçın DİCLE, Halil YAZGI, Mehmet Veysel COŞKUN, Zeynal TOPALCENGİZ

SARS-CoV-2 pozitif sağlık çalışanlarının gerçek zamanlı PCR döngü eşik değeri, klinik ve epidemiyolojik özelliklerinin değerlendirilmesi

Gül BAYRAM, Harun GÜLBUDAK, Aslıhan BEKCİ, Seda TEZCAN ÜLGER, Gülçin YAPICI, Gönül ASLAN

Periferik arter hastalarinda yükselmiş serum homositrulin düzeyleri

Duygu ERYAVUZ ONMAZ, Canan AYDOĞAN, Nazif AYGÜL, Abdullah SİVRİKAYA, Sedat ABUŞOĞLU, Ali ÜNLÜ

Borik asitin dezenfektan etkinliğinin araştırılması

Yasemin ZER, Fatma Nur KARABACAK, Ayşe BÜYÜKTAŞ MANAY

Araştırma hastanesinde yoğun bakım ünitelerindeki hastalardan izole edilen Candida türlerinin epidemiyolojisi ve antifungal duyarlılığı

Esma EREN, Hafize SAV, Zehra BEŞTEPE DURSUN

Geriatrik hastalarda idrar yolu enfeksiyonları ve etkenlerinin değerlendirilmesi

Müge AYHAN, Ayşe KAYA KALEM, İmran HASANOĞLU, Bircan KAYAASLAN, Rahmet GÜNER

Hiperglisemi RBL-1 hücrelerinde Ca2+ salınımı ile aktive olan Ca2+ akımlarını (ICRAC) arttırır

Yasin GÖKÇE, Taufiq RAHMAN, Nazmi YARAŞ

Yoğun bakım ünitesindeki COVID-19 hastalarının yapay sinir ağı ile tedavi maliyetinin tahmini

Suna KOÇ, Mehmet DOKUR, Türkan ÖZER, Betül BÖRKÜ UYSAL, Mehmet Sami İSLAMOĞLU, Nilgün AÇIKGÖZ, İlke KÜPELİ, Sena Gül KOÇ, Sema Nur DOKUR, İsmail Tuncer DEGİM

Sağlık alanındaki biyoteknolojik ürünlerin üretimi için mantarların kullanımı

Şule Aybüke YAVUZ, Ülküye Dudu GÜL

Androctonus crassicauda antivenomunun Leiurus abdullahbayrami venomuna karşı çapraz koruyuculuğunun değerlendirilmesi

Ertuğrul TURAN, Gökhan CENGİZ, İlhan BOZYİĞİT, Mehmet Ali KANAT, Derya ALTUN, Kübra KILIÇ, Edibe Nurzen NAMLI BOZKURT