Sağlık alanındaki biyoteknolojik ürünlerin üretimi için mantarların kullanımı

Biyoteknoloji, ekonomik değeri yüksek ürünlerin biyolojik materyaller kullanılarak üretilmesini amaçlayan disiplinler arası bir bilim dalıdır. Mantarlar; enzimlerin, vitaminlerin, polisakaritlerin, polihidrik alkollerin, pigmentlerin, lipidlerin ve glikolipidlerin üretimi gibi birçok endüstriyel işlemde kaynak olarak kullanılmaktadır. Bu ürünler ticari üretimleriyle sağlanan ekonomik değerlerinin yanı sıra biyoteknolojik çalışmalar açısından da potansiyel olarak değerlidir. İlk biyoteknolojik ürünler arasında maya ve mantarların kullanımı ile üretilen şarap ve bira gibi alkollü içecekler ile ekmek ve peynir gibi temel besin maddeleri bulunmaktadır. Özellikle ilk antibiyotiğin keşfi ile mantarların sağlık biyoteknolojisinde ilaç ve benzeri maddelerin üretimi için kullanım olanakları araştırılmaya başlanmıştır. Mantar sekonder metabolitleri sağlığımız ve beslenmemiz için son derece önem arz etmesinin yanı sıra bu ürünler önemli bir ekonomik etkiye sahiptir. Son yıllarda biyoteknolojik üretimlerde moleküler biyoloji ve genetik çalışmalarla geliştirilen tekniklerin kullanımı sonucu oluşturulan modifiye organizmalar kullanılmaya başlanmıştır. Günümüzde mayaları ve konakçı olarak diğer mantarları içeren rekombinant DNA teknolojisi ile üretilen mikrobiyal enzimlere ve farmasötik ürünlere yönelik üretim ve pazarlama faaliyetlerinde belirgin bir artış meydana gelmiştir. Bugün, mantar biyolojisi küresel endüstride önemli bir yere sahiptir. Yeni keşfedilmiş türler üzerine genomik ve proteomik çalışmalar devam etmektedir. Bu çalışmanın amacı sağlık biyoteknolojisinde mantarların yerini ve kullanım alanlarını değerlendirmektir. Bu çalışmadan elde edilen sonuçlar doğrultusunda maya ve mantarların sağlık biyoteknolojisinde özellikle farmasötik ürünlerin üretiminde yaygın olarak kullanıldığı saptanmıştır. Mantar ve mayalar antitümör ve antimikrobiyal ilaç etken maddeleri, aşılar ve hormonlar gibi çeşitli farmasötik ürünlerin üretiminde kullanılmaktadır. Ayrıca rekombinant DNA teknolojileri kullanılarak geliştirilen yeni mantar ve maya türlerinin hem daha verimli hem de etkin bir şekilde kullanılabildiği belirlenmiştir. Bunlara ilaveten yeni izole edilen ve özellikleri tam olarak belirlenmemiş birçok maya ve mantar türlerinin varlığının bilinmesi, sağlık biyoteknolojisinde yeni ürünlerin üretimi açısından umut vadetmektedir.

The use of fungi for the production of biotechnological products in the field of health

Biotechnology is an interdisciplinary science that aims to produce products of high economic value using biological materials. Fungi are used as a source in many industrial processes such as the production of enzymes, vitamins, polysaccharides, polyhydric alcohols, pigments, lipids and glycolipids. These products are potentially valuable in terms of biotechnological studies as well as the economic value provided by their commercial production. The first biotechnological products include alcoholic beverages such as wine and beer also, basic nutrients such as bread and cheese produced by the use of yeast and fungi. Especially with the discovery of the first antibiotic, the possibilities of using fungi for the production of drugs and similar substances in health biotechnology have been started to be investigated. Fungal secondary metabolites are extremely important for our health and nutrition and also have a significant economic impact. In recent years, modified organisms have been used in biotechnological production as a result of the use of techniques developed by molecular biology and genetic studies. Today, there has been a significant increase in production and marketing activities for microbial enzymes and pharmaceutical products produced by recombinant DNA technology, including yeasts and other fungi as hosts. Today, fungal biology is an important participant in the global industry. Genomic and proteomic studies on newly discovered species are ongoing. The aim of this study is to examine the information in the literature about the use of fungi in health biotechnology. According to the results of this study, yeasts and fungi are widely used in health biotechnology, especially in the production of pharmaceutical products. Fungi and yeasts are used in the production of various pharmaceutical products such as antitumor and antimicrobial drug active substances, vaccines and hormones. In addition, it has been determined that new fungi and yeast species developed using recombinant DNA technologies can be used both more efficiently and effectively. In addition, the existence of newly isolated yeast and fungi species with many features not fully identified is promising for the production of new products in health biotechnology.

___

  • 1. Solak MH, Kalmis E, Saglam H, Kalyoncu F. Antimicrobial activity of two wild mushrooms Clitocybe alexandri (Gill.) Konr. and Rhizopogon roseolus (Corda) TM Fries collected from Turkey. Phytother Res, 2006;20(12):1085–7.
  • 2. Demain AL. Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol, 1999;52(4):455–63.
  • 3. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol, 2002;20(5):200– 6.
  • 4. Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DV. Secretion of human interferons by yeast. Science, 1983; 219(4585):620-5.
  • 5. Miyanohara A, Toh-Et A, Nozaki C, Hamadat F, Ohtomo N, Matsubara K. Expression of hepatitis B surface antigen gene in yeast. Proc NatL Acad Sci USA, 1983;80:1–5.
  • 6. Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature, 1982;298(5872):347–50.
  • 7. Pariza MW, Johnson EA. Evaluating the safety of microbial enzyme preparations used in food processing: Update for a new century. Regul Toxicol Pharmacol, 2001;33(2):173–86.
  • 8. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT. The realm of microbial lipases in biotechnology. VBiotechnol Appl Biochem, 1999;29(2):119-31.
  • 9. Carlsen S. Industrial use of enzymes; technical and economic barriers. In: Wolinak B, Scher M, editors. Molecular biology in research and production of industrial enzymes. 1th ed. Chicago: , 1990: 52-69.
  • 10. Fleming A. On The antibacterial action of cultures of a penicillium, with special reference to their use in isolation of B. influenzae. Br J Exp Pathol, 1929;226–36.
  • 11. Borel JF, Feurer C, Gubler HU, Stähelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions, 1976;6(4):468–75.
  • 12. Shuster JR, Connelley MB. Promoter-tagged restriction enzyme-mediated insertion [PT- REMI) mutagenesis in Aspergillus niger. Mol Gen Genet, 1999;262(1):27–34.
  • 13. Hidy PH, Baldwin RS, Greasham RL, Keith CL, Mcmullen JR. Zearalenone and some derivatives: production and biological activities. Adv Appl Microbiol. 1977;22(C):59–82.
  • 14. Tudzynski B. Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl Microbiol Biotechnol, 1999;52(3):298–310.
  • 15. Meehl MA, Stadheim TA. Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol, 2014; 30:120-7.
  • 16. Gül ÜD. Sağlık alanında biyoteknolojik uygulamalar: kırmızı biyoteknoloji. Bilecik Şeyh Edebali Üni Fen Bilim Derg, 2014;2330:2148– 330.
  • 17. Romanos MA, Scorer CA, Clare JJ. Foreign gene expression in yeast: a review. Yeast. 1992;8(6):423–88.
  • 18. Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, et al. α-Factor- directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 1984;81(15 I):4642–6.
  • 19. Strohl RW. Industrial antibiotics: today and the future. In: Strohl RW, edit. Biotechnology of Antibiotics. 2nd ed. New York: Marcel Dekker, 1997; 1–47.
  • 20. Higgins DR, Cregg JM. Introduction to Pichia pastoris. In: Higgins DR, Cregg JM, eds. Pichia Protocols (Methods in Molecular Biology). New Jersey: Humana Press,1998; 1–15.
  • 21. Rosenfeld SA. Use of Pichia pastoris for expression of recombinant proteins. Methods Enzymol, 1999;306(1995):154–69.
  • 22. Brierley RA. Secretion of recombinant human insulin-like growth factor I (IGF-I). Methods Mol Biol, 1998;103:149–77.
  • 23. Cregg JM, Vedvick TS, Raschke WC. Recent Advances in the Expression of Foreign Genes in Pichia pastoris. Bio/Technology, 1993;11(8):905– 10.
  • 24. Romanos M. Advances in the use of Pichia pastoris for high-level gene expression. Curr Opin Biotechnol, 1995;6(5):527–33.
  • 25. Archer DB. Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol, 2000;11(5):478–83.
  • 26. Gouka RJ, Punt PJ, Van Den Hondel CAMJJ. Efficient production of secreted proteins by Aspergillus: Progress, limitations and prospects. Appl Microbiol Biotechnol, 1997;47(1):1–11.
  • 27. Verdoes JC, Punt PJ, van den Hondel CAMJJ. Molecular genetic strain improvement for the overproduction of fungal proteins by Filamentous fungi. Appl Microbiol Biotechnol,1995;43(2):195–205.
  • 28. Baron M, Tiraby G, Calmels T, Parriche M, Durand H. Efficient secretion of human lysozyme fused to the Sh ble phleomycin resistance protein by the fungus Tolypocladium geodes. J Biotechnol, 1992;24(3):253–66.
  • 29. Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CAMJJ. Secretion of heterologous proteins by Aspergillus niger: Production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol, 1993;31(2):135–45.
  • 30. Contreras R, Carrez D, Kinghorn JR, van den Hondel CAMJJ, Fiers W. Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus Nidulans and secretion of mature Interleukin-6. Bio/ Technology, 1991;9(4):378–81.
  • 31. Jenkins N, Curling EMA. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol, 1994;16(5):354–64.
  • 32. Kukuruzinska MA, Bergh MLE, Jackson BJ. Protein glycosylation in yeast. Annu Rev Biochem, 1987 Jun;56(1):915–44.
  • 33. Elbein AD, Mitchell M, Molyneux RJ. Effect of castanospermine on the structure and secretion of glycoprotein enzymes in Aspergillus fumigatus. J Bacteriol, 1984;160(1):67–75.
  • 34. Maras M, van Die I, Contreras R, van den Hondel CAMJJ. Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J, 1999;107:19–27.
  • 35. Xie T, Liu Q, Xie F, Liu H, Zhang Y. Secretory expression of insulin precursor in Pichia pastoris and simple procedure for producing recombinant human insulin. Prep Biochem Biotechnol, 2008 Jul;38(3):308–17.
  • 36. Gurramkonda C, Polez S, Skoko N, Adnan A, Gäbel T, Chugh D, et al. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact, 2010; 12:9.
  • 37. Biocon - India’s largest biopharmaceutical compan. https://biocon.com/, (Erşim Tarihi: 19 Temmuz 2020).
  • 38. Berlec A, Štrukelj B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol, 40(3-4):257-74.
  • 39. Çelik E, Çalık P. Production of recombinant proteins by yeast cells. Biotechnol Adv 2012;30(5):1108-18.
  • 40. Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol, 2013; 4: 217.
  • 41. Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D. Recombinant protein production in yeasts. Methods Mol Biol, 2012;824:329–58.
  • 42. Spadiut O, Capone S, Krainer F, Spadiut O, Capone S, Krainer F, Glieder A, Herwig C. Microbials for the production of monoclonal antibodies and antibody fragments.Trends Biotechnol, 2014;32(1):54-60.
  • 43. Mullard A. 2012 FDA drug approvals. Nat Rev Drug Discov, 2013;12(2):87-90.
  • 44. Syed YY, Dhillon S. Ocriplasmin: a review of its use in patients with symptomatic vitreomacular adhesion. Vol. 73, Drugs. Springer International Publishing; 2013. p. 1617–25.
  • 45. Kavanagh K. Fungi: Biology and Applications: Second Edition. Fungi: Biology and Applications: Second Edition. wiley; 2011. 1–366 p.
  • 46. ‘https://www.ablynx.com/’ (Erişim Tarihi: 19 Temmuz 2020).
  • 47. / www.lundbeck.com/global/’ (Erişim Tarihi: 19 Temmuz 2020).
  • 48. Mease P, Strand V, Shalamberidze L, Dimic A, Raskina T, Xu L-A, et al. A Phase II, Double- Blind, Randomised, Placebo-Controlled Study of BMS945429 (ALD518) in Patients with Rheumatoid Arthritis with an Inadequate Response to Methotrexate. Ann Rheu Dis, 2012; 71: 1183-9.
  • 49. Jung ST, Kang TH, Kelton W, Georgiou G. Bypassing glycosylation: Engineering aglycosylated full-length IgG antibodies for human therapy. Cur O Bio, 2011; 22(6): 858-67.
  • 50. Barnard GC, Kull A, Sharkey N, Shaikh SS, Rittenhour AM, Burnina I, Jet al. High- throughput screening and selection of yeast cell lines expressing monoclonal antibodies. J Ind Microbiol , 2010; 37: 961-71.
  • 51. Potgieter TI, Cukan M, Drummond JE, Houston- Cummings NR, Jiang Y, Li F, et al. Production of monoclonal antibodies by glycoengineered Pichia pastoris. J biotechnology, 2009); 139(4): 318-25.
  • 52. Zha D. Glycoengineered pichia-based expression of monoclonal antibodies. Methods Mol Biol, 2013;988:31–43.
  • 53. Hamilton SR, Cook WJ, Gomathinayagam S, Burnina I, Bukowski J, Hopkins D, et al. Production of sialylated O-linked glycans in Pichia pastoris. Glycobiol, 2013; 23(10): 1192– 1203.
  • 54. Glycoproteins SRH. Humanization of yeast to produce complex terminally sialylated glycoproteins. science.sciencemag.org [Internet]. 2014 [cited 2020 Jun 19];18. Available from: https://science.sciencemag. org/content/313/5792/1441.short
  • 55. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. 2014; 313(5792):1441-3.
  • 56. Liu L, Li H, Hamilton SR, Gomathinayagam S, Rayfield WJ, van Maanen M, et al. The impact of sialic acids on the pharmacokinetics of a pegylated erythropoietin. J Pharm Sci, 2012;101(12):4414–8.
  • 57. Liu L, Gomathinayagam S, Hamuro L, Prueksaritanont T, Wang W, Stadheim TA, et al. The impact of glycosylation on the pharmacokinetics of a TNFR2:Fc fusion protein expressed in glycoengineered pichia pastoris. Pharm Res, 2013;30(3):803–12.
  • 58. Liu L, Stadheim A, Hamuro L, Pittman T, Wang W, Zha D, et al. Pharmacokinetics of IgG1 monoclonal antibodies produced in humanized Pichia pastoris with specific glycoforms: A comparative study with CHO produced materials. Biologicals, 2007; 39: 205-10.
  • 59. Choi BK, Actor JK, Rios S, D’Anjou M, Stadheim TA, Warburton S, et al. Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J, 2008;25(6):581–93.
  • 60. Öztürk A, Çopur ÖU. Mantar Bileşenlerinin Teröpatik Etkileri. Bahçe, 2009;38(1):19–24.
  • 61. Schmid RD, Verger R. Lipases: interfacial enzymes with attractive applications. Angew Chemie Int Ed, 1998;37(12):1608–33.
  • 62. Gül ÜD, Coşdan Ö, Eryılmaz M. Antimicrobial Activity of Medicinal Macrofungi. In: International Congress on Medicinal and Aromatic Plants, ‘Natural and Healthy Life’ May, 9-12, Konya-Turkey 2017. (Proceeding Book, p. 1168).
  • 63. Wall ME, Wani MC. Camptothecin and taxol: discovery to clinic--thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res, 1995;55(4):753–60.
  • 64. Janos B.Are actinomycetes exhausted as a source of secondary metabolites? Biotechnologija. 1995; 61:1004-12.
  • 65. Anjum T, Iram W. Production of Cyclosporine A by Submerged Fermentation. In: Merillon JM., Ramawat K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. 2015.
  • 66. Deshmukh SK, Prakash V, Ranjan N. Marine fungi: a source of potential anticancer compounds. Front Microbiol, 2017; 8: 2536.
Türk Hijyen ve Deneysel Biyoloji Dergisi-Cover
  • ISSN: 0377-9777
  • Başlangıç: 1938
  • Yayıncı: Türkiye Halk Sağlığı Kurumu
Sayıdaki Diğer Makaleler

Hiperglisemi RBL-1 hücrelerinde Ca2+ salınımı ile aktive olan Ca2+ akımlarını (ICRAC) arttırır

Yasin GÖKÇE, Taufiq RAHMAN, Nazmi YARAŞ

Klinik vakalardan izole edilen metisilin dirençli Staphylococcus aureus (MRSA) suşlarına siprofloksasin ve yeşil çay ekstraktının sinerjik antibakteriyel etkisinin araştırılması

Yalçın DİCLE, Halil YAZGI, Mehmet Veysel COŞKUN, Zeynal TOPALCENGİZ

SARS-CoV-2 pozitif sağlık çalışanlarının gerçek zamanlı PCR döngü eşik değeri, klinik ve epidemiyolojik özelliklerinin değerlendirilmesi

Gül BAYRAM, Harun GÜLBUDAK, Aslıhan BEKCİ, Seda TEZCAN ÜLGER, Gülçin YAPICI, Gönül ASLAN

İntravitreal enjeksiyon odası ile günübirlik ameliyathane odasının hava kalitesinin ve mikrobiyal yükünün değerlendirilmesi

Erol HAVUZ, Seda GÜDÜL HAVUZ

Hipoksiye bağlı bağırsak hasarına karşı klorokin tedavisinin hafifletici etkileri: histolojik ve immünohistokimyasal bir çalışma

Ali Tuğrul AKIN, Emin KAYMAK, Emel ÖZTÜRK, Tayfun CEYLAN, Betül YALÇIN, Kemal Erdem BAŞARAN, Derya KARABULUT, Züleyha DOĞANYİĞİT, Saim ÖZDAMAR, Birkan YAKAN

Androctonus crassicauda antivenomunun Leiurus abdullahbayrami venomuna karşı çapraz koruyuculuğunun değerlendirilmesi

Ertuğrul TURAN, Gökhan CENGİZ, İlhan BOZYİĞİT, Mehmet Ali KANAT, Derya ALTUN, Kübra KILIÇ, Edibe Nurzen NAMLI BOZKURT

Borik asitin dezenfektan etkinliğinin araştırılması

Yasemin ZER, Fatma Nur KARABACAK, Ayşe BÜYÜKTAŞ MANAY

Geriatrik hastalarda idrar yolu enfeksiyonları ve etkenlerinin değerlendirilmesi

Müge AYHAN, Ayşe KAYA KALEM, İmran HASANOĞLU, Bircan KAYAASLAN, Rahmet GÜNER

B12 vitamini sıçanlarda metotreksatın neden olduğu akciğer hasarını azaltır: Histopatolojik, immünohistokimyasal ve biyokimyasal bir çalışma

Emin KAYMAK, Derya KARABULUT, Emel ÖZTÜRK, Ali Tuğrul AKIN, Nurhan KULOĞLU, Birkan YAKAN

Sağlık alanındaki biyoteknolojik ürünlerin üretimi için mantarların kullanımı

Şule Aybüke YAVUZ, Ülküye Dudu GÜL