Tüberküloz tedavisinde yeni ilaç adayları

Tüberküloz, bütün dünyada önemli bir halk sağlığı sorunu olmaya devam etmekte olan, çok eski bulaşıcı ve ölümcül bir hastalıktır. Özellikle Afrika ve Asya ülkelerinde yaygın olarak görülen ve tüm dünyayı ilgilendiren bir sağlık sorunudur. Tüberkülozun giderek artan bir dünya sorunu olması; Mycobacterium tuberculosis zincirleri üzerindeki çoklu antibiyotik tedavisine karşı gelişen direncin artan şekilde devam etmesi ve HIV virüsüne bağlı olarak ortaya çıkan enfeksiyon nedeniyledir. Tüberküloz hastalığında tedavi en az altı ay süre ile çoklu ilaçlar ile gerçekleştirilmektedir. Tek ilaçla ve uygun olmayan süre yapılan tedavi ilaç direnci gelişimine yol açmaktadır. Tedavide kullanılan ilaçların uzun süre kullanılması ilaçların oluşturacağı yan etkiler açısından da risk oluşturmakta, ilaçların yan etkileri hastanın tedaviye uyumunu zorlaştırmakta ve bazen de hastanın tedaviyi bırakmasına neden olmaktadır. Bu nedenlerle hastalığın tedavisinde kullanılabilecek direnç gelişmemiş, etkili, tedavi süresini kısaltacak ve yan etkileri az olan yeni ilaçların bulunması şart olmuştur. 40 yıl gibi uzun bir aradan sonra ilk kez tedavide kullanılabilecek yeni bir ilaç etken maddesi Bedaquiline FDA tarafından Faz II aşamasındayken 2012 Aralık ayı sonunda onay almıştır. Bedaquiline çok ilaca dirençli tüberküloz tedavisinde kullanılacaktır. Bedaquilinein ve yeni aday ilaçların yapıları incelendiğinde diarilkinolin, oksazolidinon, nitroimidazol, etilendiamin gibi ortak kimyasal yapılar dikkat çekmektedir. Bu ilaçların sahip olduğu ortak kimyasal yapılar yeni aday ilaçları tasarlarken yol gösterici olacaktır. Bu derlemede tüberküloz hastalığının tedavisinde kullanılmak üzere bedaquiline ve üzerinde preklinik ve daha ileri aşamalarda araştırma yapılan sutezolid, linezolid, PA-824, delamanid, rifapentin, gatifloksasin, moksifloksasin, BTZ-043, TBA-354, CPZEN-45, DC-159a, Q201, SQ-609, SQ-641 gibi yeni aday ilaçlardan bahsedilmiştir.

New drug candidates in tuberculosis treatment

Anaysis And Control Laboratories, General Directorate Of Pharmaceuticals And Pharmacy, Ministry Of Health Of Turkey, Ankara, TurkeyTuberculosis is a very old infectious and mortal disease that continues to threaten the world. It is a growing health problem for all over the world although it has high prevalence mostly in poor African and Asian countries. This is because of the increasing pathology of tuberculosis with HIV and the resistance to antibiotic therapy. The treatment period is at least six months in tuberculosis. This causes the development of resistance to drugs and using multidrug therapy. The long duration of multidrug therapy creates a risk of side effects. The side effects of the drugs decrease the patient s adherence to treatment and sometimes makes them quit the treatment. From these problems emerges the need for development of effective new drugs, with smaller duration of therapy, less side effects and without the problem of resistance. After a long period such as 40 years, a new drug molecule bedaquiline was approved in December 2012 by FDA while the drug was in phase II research. Bedaquiline will be used in multidrug resistant tuberculosis therapy. When the chemical structures of bedaquilline and other candidate drugs were examined, the structures such as diarylquinoline, oxazolidinone, nitroimidazole, ethylenediamine drew attention. These common structures will be directive in designing new molecules. In this review, bedaquiline and other candidate drug molecules such as sutezolide, linezolide, PA-824, delamanide, rifapentine, gatifloxacin, moxifloxacin, BTZ-043, TBA-354, CPZEN-45, DC-159a, Q201, SQ-609, SQ-641 were mentioned

___

  • 1. Bhardwaj A, Scaria V, Raghava GPS, Lynn AM, Chandra N, Banerjee S, et al. Open source drug discovery- A new paradigm of collaborative research in tuberculosis drug development. Tuberculosis, 2011; 91: 479-86.
  • 2. World Health Organization. Global tuberculosis control: WHO report 2012. Geneva: WHO; 2012. 978 92 4 156450 2. p. 1-272.
  • 3. Manjunatha U, Boshoff HIM, Barry CE. The mechanism of action of PA-824. Commun Integr Biol, 2009; 2 (3): 215-8.
  • 4. Sankar C, Pandiarajan K. Synthesis and anti- tubercular and antimicrobial activities of some 2r,4c-diaryl-3-azabicyclo[3.3.1]nonan-9-one N-isonicotinoylhydrazone derivatives. Eur J Med Chem, 2010; 45: 5480-5.
  • 5.Tahaoğlu K, Kongar N, Elbek O, Tümer Ö, Kılıçaslan Z. Türk Tabipleri Birliği Tüberküloz Raporu. Birinci Baskı, Ankara, Türk Tabipler Birliği Yayınları, 2012.
  • 6. Yang J, Pi W, Xiong L, Ang W, Yang T, He J, et al. 3H-1,2,4-Dithiazol-3-one compounds as novel potential affordable antitubercular agents. Bioorg Med Chem Lett, 2013; 23:1424-27.
  • 7. Kayaalp, O. Tüberküloz ve Diğer Mikobakteri İnfeksiyonlarında Kullanılan İlaçlar. In: Kayaalp, O. Rasyonel Tedavi Yönünden Tıbbi Farmakoloji. 1. Cilt 11. Baskı. Ankara: Hacettepe-Taş Kitabevi, 2005; 254-65.
  • 8. Waksman SA. Streptomycin: background, isolation, properties, and utilization. Nobel Lecture, December 12, 1952.
  • 9. Dutt AK, Stead W. The treatment of tuberculosis. DM Tuberculosis. Part II. April 1997; 43 (3): 247-74.
  • 10.Tuberculosis Chemotherapy Trials Committee. Interim report to the Medical Research Council: the treatment of pulmonary tuberculosis with isoniazid. BMJ, 1952; 2: 735-46.
  • 11.Collazos J, Mayo J, Martınez E. The chemotherapy of tuberculosis - from the past to the future. Resp Med, 1995; 89: 463-9.
  • 12. Zhang Y, Post-Martens K, Denkin S. New drug candidates and therapeutic targets for tuberculosis therapy. Drug Discov Today, 2006; 11 (1-2): 21-7.
  • 13.Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin, EJ. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol, 2004; 53 (1): 275-82.
  • 14.Maus CE, Plikaytis BB, Shinnick TM. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2005; 49 (2): 571-7.
  • 15. Lessem E. The tuberculosis treatment pipeline. HIV Treatment Bulletin. Related: Special reports http://i- base.info/htb/17111 (Accessed 26.06.2013)
  • 16. Reddy VM, O’Sullivan JF, Gangadharam PRJ. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother, 1999; 43: 615-23.
  • 17. Novartis Drug Regulatory Affairs. Lamprene (clofazimine) 50 or 100 mg capsules (soft) international package leaflet. 2005 June 23. Available from: http://www.lamprene.com/ fileadmin/pharmaworld/lamprene/lamprene_ packing_insert.pdf. (Accessed 26.06.2013)
  • 18. Rubinstein E, Keynan Y. Quinolones for mycobacterial infections. Int J Antimicrob Agents, 2013; 42 (1): 1-4.
  • 19.Xu C, Kreiswirth BN, Sreevatsan S, Musser JM, Drlica K. Fluoroquinolone resistance associated with specific gyrase mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis. J Infect Dis, 1996; 174: 1127-30.
  • 20.Hooper DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis, 2001; 32 (Suppl 1): S9-15.
  • 21. Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. PLoS One, 2012; 7(6): e39754. doi: 10.1371/journal. pone.0039754. (Accessed:20.06.2013)
  • 22. Aubry A, Pan XS, Fisher LM, Jarlier V, Cambau E. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob Agents Chemother, 2004; 48 (4): 1281-8.
  • 23.24.Takiff HE, Salazar L, Guerrero C, Philipp W, Huang WM, Kreiswirth B, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyra and gyrb genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother, 1994; 38 (4): 773-80.
  • Wang JC. DNA topoisomerases. Annu Rev Biochem 1996; 65: 635-92.
  • 25.Da Silva PEA, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother, 2011; 66: 1417-30.
  • 26. Drlica K. Mechanism of fluoroquinolone action. Curr Opin Microbiol, 1999; 2: 504-8.
  • 27. Lemos ACM, Matos ED. Multidrug-resistant tuberculosis. Braz J Infect Dis, 2013; 17 (2): 239-46. 1
  • 28.Barry CE, Blanchard JS. The chemical biology of new drugs in the development for tuberculosis. Current Opin Chem Biol, 2010; 14: 456-66.
  • 29. Villemagne B, Crauste C, Flipo M, Baulard AR, Déprez B, Willand N. Tuberculosis: the drug development pipeline at a glance. Eur J Med Chem, 2012; 51: 1-16.
  • 30.Swaney SM, Aokı H, Ganoza MC, Shinabarger DL. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother, 1998; 42 (12): 3251-5.
  • 31. Gee T, Ellis R, Marshall G, Andrews J, Ashby J, Wise R. Pharmacokinetics and tissue penetration of linezolid following multiple oral doses. Antimicrob Agents Chemother, 2001; 45 (6): 1843-6.
  • 32.33.Ament PW, Jamshed N, Horne JP. Linezolid: its role in the treatment of Gram-positive, drug-resistant bacterial infections. Am Fam Physician, 2002; 65 (4): 663-71.
  • Schecter GF, Scott C, True L, Raftery A, Flood J, Mase S. Linezolid in the treatment of multidrug-resistant. Tuberculosis, 2010; 50 (1): 49-55.
  • 34. National Institutes of Health (U.S.). Linezolid to treat extensively-drug resistant tuberculosis. Available from: http://www.clinicaltrials.gov/ct2/show/ NCT00727844? term=linezolid &rank=24. (Accessed 26.06.2012)
  • 35. Aristoff PA, Garcia GA, Kirchhoff PD, Showalter H. Rifamycins. Obstacles and opportunities. Tuberculosis, 2010; 90: 94-118.
  • 36. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 2001; 104: 901-12.
  • 37. Azis L, Jones-Lo pez EC, Ellner JJ. HIV-associated tuberculosis. In: Volberding PA, Lange JMA, Greene WC, Gallant JE, Sewankambo N. Sande's HIV/AIDS Medicine: Medical Management of AIDS 2012. 2nd edition. China. 2012; 325-47.
  • 38. Saito H, Tomioka H, Sato K, Emorı M, Yamane T, Yamashıta K, et al. In vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins. Antimicrob Agents Chemother, 1991; 35 (3): 542-7.
  • 39.Tomioka H, Saito H, Fujii K, Sato K, Hidaka T. In vitro antimicrobial activity of benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex determined by the radiometric method. Antimicrob Agents Chemother, 1993; 37: 67-70.
  • 40. Hirata T, Saıto H, Tomıoka H, Sato K, Jıdoı J, Hosoe K, et al. In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1995; 39 (10): 2295-303.
  • 41.Dietze R, Teixeira L, Rocha LMC, Palacı M, Johnson JL, Wells C, et al. Safety and bactericidal activity of rifalazil in patients with pulmonary tuberculosis. Antimicrob Agents Chemother, 2001; 45 (7): 1972-6.
  • 42. Anonymous. Rifalazil (Editorial). Tuberculosis, 2008; 88 (2): 148-50.
  • 43. Moghazeh SL, Pan X, Araın T, Stover CK, Musser JM, Kreıswırth BN. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM- 1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother, 1996; 40 (11): 2655-7.
  • 44. Williams DL, Spring L, Collıns L, Mıller LP, Heıfets LB, Gangadharam PRJ, et al. Contribution of rpoB mutations to development of rifamycin cross- resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1998; 42 (7): 1853-7.
  • 45. Diacon AH, Dawson R, Groote-Bidlingmaier FTV, Symons G, Venter A, Donald PR, et al. A randomized dose-ranging study of the 14-day early bactericidal activity of bedaquiline (TMC207) in patients with sputum microscopy smear-positive pulmonary tuberculosis. Antimicrob Agents Chemother, 2013; 57(5): 2199-203.
  • 46. Anonymous. After 40 years, new medicine for combating TB (Editorial). IJMyco, 2013; 2: 1-2.
  • 47.Anonymous. New tuberculosis tools are here: Can we deliver them for maximal impact? (Editorial). JEGH, 2013; 3: 1-2.
  • 48.Andries K, Verhasselt P, Guillemont J, Göhlmann HWH, Neefs JM, Winkler H, et al. Diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005; 307: 223-7.
  • 49. Huitric E, Verhasselt P, Andries K, Hoffner SE. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother, 2007; 51 (11): 4202-4.
  • 50.Moir DT, Opperman TJ, Butler MM, Bowlin TL. New classes of antibiotics. Curr Opin Pharmacol, 2012; 12: 535-44.
  • 51. Singh H, Natt NK, Garewal N, Pugazhenthan T. Bedaquiline: a new weapon against MDR and XDR-TB. Int J Basic Clin Pharmacol, 2013; 2 (2): 96-102.
  • 52.Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J, et al. Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother, 2009; 53 (3): 1290-2.
  • 53. Riccardi G, Pasca MR, Buroni S. Mycobacterium tuberculosis: drug resistance and future perspectives. Future Microbiol, 2009; 4 (5): 597-614 .
  • 54.Koul A, Vranckx L, Dendouga N, Balemans W, Wyngaert IV, Vergauwen K, et al. Diarylquinolines are bactericidal for dormant Mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem, 2008; 283 (37): 25273-80.
  • 55. Dooley KE, Kim PS, Williams SD, Hafner R.TB and HIV therapeutics: pharmacology research priorities. AIDS Res Treat, 2012; 2012: 874083. doi: 10.1155/2012/874083 (Accessed 20.06.2013).
  • 56.Manjunatha UH, Boshoff H, Dowd CS, Zhang L, Albert TJ, Norton JE, et al. Identification of a nitroimidazo- oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. PNAS, 2006; 103 (2): 431-6.
  • 57. Singh R, Manjunatha U, Boshoff HIM, Ha YH, Niyomrattanakit P, Ledwidge R, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science, 2008; 322 (5906): 1392-5.
  • 58. Manjunatha UH, Lahiri R, Randhawa B, Dowd CS, Krahenbuhl JL, Barry CE. Mycobacterium leprae is naturally resistant to PA-824. Antimicrob Agents Chemother, 2006; 50 (10): 3350-4.
  • 59. Winter H, Egizi E, Erondu N, Ginsberg A, Rouse DJ, Severynse-Stevens D, et al. Evaluation of pharmacokinetic interaction between PA-824 and midazolam in healthy adult subjects. Antimicrob Agents Chemother. 2013 May 20. doi:10.1128/ AAC.02632-12. (Accessed: 20.06.2013).
  • 60. Grosset JH, Singer TG, Bishai WR. New drugs for the treatment of tuberculosis: hope and reality. Int J Tuberc Lung Dıs, 2012; 16 (8): 1005-14.
  • 61. Ginsberg AM, Laurenzi MW, Rouse DJ, Whitney KD, Spigelman, MK. Safety, tolerability, and pharmacokinetics of PA-824 in healthy subjects. Antimicrob Agents Chemother, 2009; 53 (9): 3720-5.
  • 62.Sasaki H, Haraguchi Y, Itotani M, Kuroda H, Hashizume H, Tomishige T, et al. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3- dihydroimidazo[2,1-b]oxazoles. J Med Chem, 2006; 49: 7854-60.
  • 63. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, et al. OPC-67683, a nitro- dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Medicine, 2006; 3 (11): e466.
  • 64. Diacon AH, Dawson R, Hanekom M, Narunsky K, Venter A, Hittel N, et al. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis, 2011; 15 (7): 949-54.
  • 65.Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med, 2012; 366: 2151-60.
  • 66.Skripconoka V, Danilovits M, Pehme L, Tomson T, Skenders G, Kummik T, et al. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J, 2013; 41: 1393-400.
  • 67. Upton AM. TBA-354: A next generation nitroimidazole for treatment of drug sensitive and drug-resistant tuberculosis. 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). September 9-12, San Francisco. 2012.
  • 68.Bozdogan B, Appelbaum PC. Oxazolidinones: activity, mode of action, and mechanism of resistance. Int J Antimicrob Agents, 2004; 23: 113-9.
  • 69. Michalska K, Karpiuk I, Król M, Tyski S. Recent development of potent analogues of oxazolidinone antibacterial agents. Bioorg Med Chem, 2013; 21: 577-91.
  • 70. Cynamon MH, Klemens SP, Sharpe CA, Chase S. Activities of several novel oxazolidinones against mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother, 1999; 43 (5): 1189-91.
  • 71.Shaw KJ, Barbachyn MR. The oxazolidinones: past, present, and future. Ann N Y Acad Sci, 2011, 1241: 48-70.
  • 72. Ahmad S. New perspectives in the diagnosis and treatment of tuberculosis. Bacteriol Parasitol, 2012; 3(9): 1000e114. http://dx.doi.org/10.4172/2155- 9597.1000e114. (Erişim 20.06.2013)
  • 73. Swindells S. New drugsMed Rep, 2012; 4: 12-8. to treat tuberculosis. F1000
  • 74. Wallis RS, Jakubiec WM, Kumar V, Silvia AM, Paige D, Dimitrova D, et al. Pharmacokinetics and whole- blood bactericidal activity against Mycobacterium tuberculosis of single doses of PNU-100480 in healthy volunteers. J Infect Dis, 2010; 202 (5): 745-51.
  • 75. Pepper DJ, Meintjes GA, Mcılleron H, Wilkinson RJ. Combined therapy for tuberculosis and HIV-1: the challenge for drug discovery. Drug Discov Today, 2007; 12 (21/22): 980-9.
  • 76. Chen P, Gearhart J, Protopopova M, Einck L, Nacy CA. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J Antimicrob Chemother, 2006; 58: 332-7.
  • 77.Reddy VM, Dubuisson T, Einck L, Wallis RS, Jakubiec W, Ladukto L, et al. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro. J Antimicrob Chemother, 2012; 67: 1163-6.
  • 78. Nikonenko BV, Protopopova M, Samala R, Einck L, Nacy CA. Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB Drugs. Antimicrob Agents Chemother, 2007; 51 (4): 1563-5.
  • 79. Jia L, Noker PE, Coward L, Gorman GS, Protopopova M, Tomaszewski JE. Interspecies pharmacokinetics and in vitro metabolism of SQ109. Brit J Pharmacol, 2006; 147: 476-85.
  • 80. Meng Q, Luo H, Liu Y, Li W, Zhang W, Yao Q. Synthesis and evaluation of carbamate prodrugs of SQ109 as antituberculosis agents. Bioorg Med Chem Lett, 2009; 19: 2808-10.
  • 81. Makarov V, Manina G, Mikusova K, Möllmann U, Ryabova O, Saint-Joanis B, et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009; 324: 801-4.
  • 82. Neres J, Pojer F, Molteni E, Chiarelli LR, Dhar N, Boy- Röttger S, et al. Structural basis for benzothiazinone- mediated killing of Mycobacterium tuberculosis. Sci Transl Med, 2012; 4 (150): 150ra121.
  • 83. Sala C, Dhar N, Hartkoorn RC, Zhang M, Ha YH, Schneider P, et al. Simple model for testing drugs against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2010; 54 (10): 4150-8.
  • 84. Lechartier B, Hartkoorn RC, Cole ST. Invitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2012; 56 (11): 5790-3.
  • 85. Adhvaryu M, Vakharia B. Drug-resistant tuberculosis: emerging treatment. Clin Pharmacol, 2011; 3: 51-67.
  • 86.Hoshino K, Inoue K, Murakami Y, Kurosaka Y, Namba K, Kashimoto Y, et al. In vitro and in vivo antibacterial activities of DC-159a, a new fluoroquinolone. Antimicrob Agents Chemother, 2008; 52(1): 65-76.
  • 87.Ahmad Z, MinkowskiA, Peloquin CA, Williams KN, Mdluli KE, Grosset JH, et al. Activity of the fluoroquinolone DC-159a in the initial and continuation phases of treatment of murine tuberculosis. Antimicrob Agents Chemother, 2011; 55 (4): 1781-3.
  • 88. Shakya N, Garg G, Agrawal B, Kumar R. Chemotherapeutic interventions against tuberculosis. Pharmaceuticals, 2012; 5: 690-718.
  • 89.90.91.92.Bogatcheva E, Hanrahan C, Nikonenko B, Santos G, Reddy V, Chen P, et al. Identification of SQ609 as a lead compound from a library of dipiperidines. Bioorg Med Chem Lett, 2011; 21: 5353-7.
  • Sequella Licensing Opportunity SQ609 Therapeutic: Pre-clinical Indication: Treatment of Pulmonary TB. http://www.sequella.com/docs/Sequella_1sheet_ SQ609_v1.pdf. (Erişim 26.06.2013)
  • Dubuisson T, Bogatcheva E, Krishnan MY, Collins MT, Einck L, Nancy CA, et al. (2010). In vitro antimicrobial activities of capuramycin analogues against non- tuberculous mycobacteria. J Antimicrob Chemother, 2010; 65 (12): 2590-7.
  • Sandeep G, Mona S, Kumar GM, Kapil N, Raman G. New drug regimens for old disease tuberculosis: a rewiev. IRJAP, 2011; 2 (1), 126-31.
  • 93.Koga T, Fukuoka T, Doi N, Harasaki T, Inoue H, Hotoda H, et al. Activity of capuramycin analogues against Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellulare in vitro and in vivo. J Antimicrob Chemother, 2004; 54: 755-60.
  • 94. Shaharyar MS, Siddiqui AA, Ali MA. Synthesis and evaluation of phenoxy acetic acid derivatives as a anti- mycobacterial agents. Bioorg Med Chem Lett, 2006; 16: 4571-4.
  • 95. Sriram D, Yogeeswari P, Reddy SP. Synthesis of pyrazinamide Mannich bases and its antitubercular properties. Bioorg Med Chem Lett, 2006; 16: 2113-6.
  • 96.97.98.99.Shaharyar MS, Siddiqui AA, Ali MA, Sriram D, Yogeswari, P. Synthesis and in vitro antimycobacterial activity of N1-nicotinoyl-3-(4’-hydroxy-3’-methyl phenyl)-5- [(sub)phenyl]-2-pyrazolines. Bioorg Med Chem Lett, 2006; 16: 3947-9.
  • Sriram D, Yogeeswari P, Madhu K. Synthesis and in vitro antitubercular activity of some 1-[(4-sub)phenyl]-3- (4-(1-[(pyridine-4-carbonyl) hydrazono]ethyl) phenyl) thiourea. Bioorg Med Chem Lett, 2006; 16: 876-8.
  • Lin YM, Zhou Y, Flavin MT, Zhou LM, Nie W, Chen FC. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg Med Chem, 2002; 10: 2795-802.
  • Evranos, B. Yeni bazı flavonoid türevlerinin sentezi, kimyasal yapılarının aydınlatılması ve monoamin oksidaz enzimleri üzerine etkilerinin araştırılması. Doktora tezi, Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, 2010.