STAPHYLOCOCCUS EPIDERMIDIS VE ESCHERICHIA COLI ’NİN ÇEŞİTLİ CERRAHİ İPLİKLERE YAPIŞMA DAVRANIŞLARI

Cerrahi iplikler, ameliyat tipine, yerine ve derecesine bağlı olarak farklı özellik taşıyan biyomalzemelerdir. Çalışmamızda kollojen Kromo katgüt® , poliglikolat Dexon® , poliglikolat’laktat Vicryl® , polidioksanon PDS® ve poliprofilen Prolen® bazlı beş farklı cerrahi ipliğe Escherichia coli ve Stopylococcus epidermidis’in dinamik şartlarda yapışma davranışları araştırılmış, çalkalama sıvılarındaki bakteri sayısı ‘‘Plak Sayım Yöntemi’’ ile saptanmıştır. Her iki suş beş farklı cerrahi ipliğe farklı zamanlarda farklı adsorbsiyon ve desorbsiyon göstermişlerdir. S. epidermidis suşu en fazla Vicryl®’e yapışırken, diğer iplikler Dekson, K.Katgüt, Prolen, PDS şeklinde sıralanmıştır. E.coli suşu en çok Dekson’a yapışırken diğer iplikler sırasıyla; Vicryl®; K.Katgüt®, Prolen®, PDS® ş e k l i n d e belirlenmiştir. Her iki suşun beş cerrahi ipliğe olan yapışma davranışları karşılaştırıldığında, S . e p i d e r m i d i s’ i n , Vicryl® hariç diğer ipliklere E.coli ’den daha az yapışma gösterdiği belirlenmiştir.

Adhesion Behaviours Of Staphylococcus Epidermidis And Escherıchia Coli On Different Surgery Sutures

Surgical sutures are biodevices that vary especially according to type, location, and level of operation. In our study, cromic catgut, polyglycolate Dexon® , polyglycolate/lactate Vicryl® , polydioxanone PDS® ve polypropylene Prolen® were investigated according to adhesive behavior of E.coli and S.epidermidis under dynamic conditions. Number of bacteria in washing solution was determined by plate count method. Both strains, showed different absorption and desorption to five different surgical catguts in different times. While S.epidermidis strain behaved as the most adhesive to Vicryl®, the others were Dexon®, cromic catgut® , Prolen®, and PDS respectively. While E.coli strain behaved as the most adhesive to Dexon®, the others were Vicryl®, Cromic catgut®, Prolen®, PDS® respectively. When both strains were compared with each other in terms of their total adhesion to five surgical catguts, S.epidermidis adhered less to the other catguts, except Vicryl® than E.coli.

___

  • 1. Banerjee SN, Emori TG, Culver DH. Secular trends in nosocomial primary bloodstream infections in the United States, 1980-1989. National Nosocomial Infections Surveillance System. Am. J. Med. 1991; 91: 865-89.
  • 2. Brash JL. Biomaterials in Canada: the first four decades. Biomaterials. 2005; 26 (35): 7209-20.
  • 3. Owen GR, Meredith DO, Gwynn I, Richards RG. Focal adhesion quantification - a new assay of material biocompatibility? Review Eur Cell Mater 2005; 23 (9): 85-96.
  • 4. Lendlein A, Kratz K, Kelch S: Smart implant materials. Med Device Technol. 2005; 16 (3): 12-4.
  • 5. Pfaller M, Wenzel R. Impact of the changing epidemiology of fungal infections in the 1990s. Eur J Clin Microbiol Infect Dis 1992; 11: 287-91.
  • 6. Ramage G, Vandewalle K, Wickes BL, Lopez-Ribot JL, Gordon Ramage, Kacy VandeWalle, Brian L, Wickes & José L, López–Ribot. Characteristics of biofilm formation by Candida albicans. Rev. Iberoam Micol. 2001; 18 (4): 163-70.
  • 7. Costerton JW, Stewart PS, Greenberg EP: Bacterial Biofilms: A Common Cause of Persistent Infections (http://www.mstp.northwestern.edu/m1jc_2002/papers/Costerton_Hauser.pdf). Ulaşılma tarihi 12.11.2005.
  • 8. Shuhaiber H, Chugh T, Burns G. In vitro adherence of bacteria to sutures in cardiac surgery. J Cardiovasc Surg (Torino). 1989 Sep-Oct;30(5): 749-53.
  • 9. Montana State University, Center for Biofilm Engineering: (http://www.erc.montana.edu/Res-Lib99-SW/g lossary/gintro.html). Ulaşılma Tarihi 12.11.2005.
  • 10. Ananthakrishnan N, Rao S, Shivam S. Bacterial adharence to cotton and silk suture. Nat. Med J, India. 1992 Sep-Oct; 5(5): 217-8.
  • 11. Yousefi Rad A, Ayhan H, Kisa U, Piskin E. Adhesion of different bacterial sırtrains to low-temperature plasma treated biomedical PVC catheter surfaces. J, Biomater Sci Polym Ed. 1998; 9(9): 915-29
  • 12. Edlich RF, Panek PH, Rodeheaver GT, Turnbull VG, Kurtz LD, Edgerton MT. Physical and chemical configuration of sutures in the development of surgical infection. Ann. Surg. 1973 Jun;177 (6): 679-88.
  • 13. Robin R. Szarmach, Jean Livingston, R.N., et all. An Innovative Surgical Suture and Needle Evaluation and Selection Program. Journal of Long-Term Eff ects of Medical Implants. 2002; 12 (4): 211–29.
  • 14. Kant Y. Lin, William B. Long III, Scientific Basis For The Selection of Surgical Needles and Sutures. March, 2005 (http://www.woundclosures.com/Article1.pdf). Ulaşılma Tarihi 12.11.2005.
  • 15. Sugarman B, Musher D. Adherence of bacteria to suture materials. Proc Soc Exp Biol Med. 1981; 167 (2): 156-60.
  • 16. Katz S, Izhar M, Mirelman D. Bacterial adherence to surgical sutures. A possible factor in suture induced infection. Ann Surg. 1981 Jul; 194 (1): 35-41.
  • 17. Otten JE, Wiedmann-Al-Ahmad M, Jahnke H, Pelz K. Bacterial colonization on different suture materials a potential risk for intraoral dentoalveolar surgery. J. Biomed. Mater. Res. B Appl. Biomater. 2005 Jul; 74 (1): 627-35.
  • 18. Chu, CC, Tsai WC, Yao JY, Sindy S Chiu., Newly made antibacterial braided nylon sutures. I., In vitro qualitative and in vivo preliminary biocompatibility study. J. Biomedical Materials Research. 1987; 21: 1281-1300.
  • 19. Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res. 2002; 63 (6): 765-71.
  • 20. Pineros-Fernandez A, Drake DB, Rodeheaver PA, Moody DL, Edlich RF, Rodeheaver GT. CAPROSYN, another major advance in synthetic monofilament absorbable suture. J Long Term Eff Med Implants. 2004; 14 (5): 359-68.
  • 21. Zachmann GC, Foresman PA, Bill TJ, Bentrem DJ, Rodeheaver GT, Edlich RF. Evaluation of new absorbable Lactomer subcuticular staple. J Appl Biomater. 1994; 5(3): 221-6.