Obezitenin önlenmesi ve tedavisinde diyet fitokimyasallarının olası rolleri

Obezite, aşırı ve anormal yağ birikimi ile karakterize olan ve sağlığı olumsuz etkileyen kronik metabolik bir bozukluk olarak tanımlanmaktadır. Son yıllarda tüm dünyada artış gösteren obezite, tip 2 diyabet, kalp hastalıkları, hipertansiyon ve çeşitli kanser türleri gibi metabolik ve kronik hastalıklarla ilişkilendirildiğinden sağlık hizmetleri için büyük bir yük oluşturmaktadır. Diyet ve fiziksel aktivite başta olmak üzere yaşam tarzı ve davranış değişikliği müdahaleleri, obezitenin önlenmesi ve tedavisi için hala önemli köşe taşlarıdır. Bunların yanında, bitkisel ürünlerin obezite tedavisini destekleyici potansiyelleri de son yıllarda büyük ilgi görmektedir. Fitokimyasallar, doğal olarak meyveler, sebzeler, tahıllar ve diğer bitkisel ürünlerde bulunan ve genellikle bitkilerin renk, tat ve koku gibi organoleptik özelliklerinden sorumlu olan biyoaktif bileşenlerdir. Diyetle alınan bu biyoaktif besin bileşenlerinin, antioksidan, hipolipidemik, hipotansif, antiaterojenik, antidiyabetik, hepatoprotektif, nöroprotektif, antikanser ve anti-inflamatuar özellikler göstererek sağlığı geliştirici etkilere sahip oldukları bilinmektedir. Obezite ve ilişkili komplikasyonların önlenmesi ve tedavisinde potansiyel faydaları en çok dikkat çeken ve sıklıkla çalışılan diyet fitokimyasalları arasında polifenoller, terpenoidler, organosülfürler ve fitosteroller yer almaktadır. Son dönemde yapılan çalışmalar antioksidan ve anti-inflamatuar aktivite gösteren biyoaktif bileşenlerin termogenez ve total enerji harcamasını arttırarak, oksidatif stres ve inflamasyonu azaltarak ağırlık kaybını destekleyebildiğini göstermektedir. Buna ek olarak, fitokimyasalların, adipogenez üzerindeki rolleri dahil olmak üzere obezite ile ilgili fizyolojik ve moleküler yolakları düzenleyebildiği de bildirilmektedir. Bu derlemede in vitro, in vivo ve epidemiyolojik çalışmalardan elde edilen kanıtlar çerçevesinde, diyet fitokimyasallarının adipoz doku gelişimi ve preadipozit farklılaşmasını baskılayabilme, mevcut adipozitlerin apoptozunu indükleyebilme, lipolizi uyarabilme ve böylece yağ dokusunu azaltabilme; iştahı baskılayarak ve enerji alımını azaltarak ağırlık yönetimini destekleyebilme potansiyelleri tartışılmıştır.

The potential roles of dietary phytochemicals in the prevention and treatment of obesity

Obesity is defined as a chronic metabolic disorder in which excessive and abnormal fat accumulation that negatively affects health. Obesity is one of major burdens to health services due to its increasing worldwide prevalence in the recent years and associations with metabolic and chronic diseases such as type 2 diabetes, heart diseases, hypertension and various types of cancer. Lifestyle and behavior modification interventions, especially the modification of diet and physical activity level, are still important cornerstones for the prevention and treatment of obesity. In addition to lifestyle modifications, the potential of plant based products in obesity management has gained great attention in recent years. Phytochemicals are bioactive components naturally found in fruits, vegetables, cereals, and other plant based products, and generally responsible for the organoleptic properties of plants, such as color, taste and smell. It is known that dietary bioactive components have antioxidant, hypolipidemic, hypotensive, antiatherogenic, antidiabetic, hepatoprotective, neuroprotective, anticancer and anti-inflammatory properties that promote health. Dietary phytochemicals with potential benefits in the prevention and treatment of obesity and related complications include polyphenols, terpenoids, organosulfurs, and phytosterols. Recent studies show that bioactive components with antioxidant and antiinflammatory activity can support weight loss by increasing thermogenesis and total energy expenditure and reducing oxidative stress and inflammation. In addition, it is reported that phytochemicals can regulate physiological and molecular pathways involved in obesity, including their role in adipogenesis. In this review, the potential roles of dietary phytochemicals in the suppression of adipose tissue development and preadipocyte differentiation, induction of apoptosis of present adipocytes and stimulation of lipolysis, thereby, reduction of body fat mass; and also in suppression of appetite and reduction of dietary energy intake, and hence management of body weight were discussed within the framework of the evidence obtained from in vitro, in vivo and epidemiological studies.

___

  • 1. Rush EC, Yan MR. Evolution not revolution: nutrition and obesity. Nutrients, 2017;9(5):519.
  • 2. Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci, 2009;54(9):1847-56.
  • 3. González-Castejón M, Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol Res, 2011;64(5):438-55.
  • 4. Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, et al. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab (Lond), 2016;13(1):27.
  • 5. Zhao Y, Chen B, Shen J, Wan L, Zhu Y, Yi T, et al. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxid Med Cell Longev, 2017;2017:1459497.
  • 6. Kim HS, Moon JH, Kim YM, Huh JY. Epigallocatechin Exerts Anti-Obesity Effect in Brown Adipose Tissue. Chem Biodivers, 2019;16(10):e1900347.
  • 7. Sivamaruthi BS, Kesika P, Chaiyasut C. The Influence of Supplementation of Anthocyanins on Obesity-Associated Comorbidities: A Concise Review. Foods, 2020;9(6):687.
  • 8. Wang S, Wang Y, Pan M-H, Ho C-T. Anti-obesity molecular mechanism of soy isoflavones: weaving the way to new therapeutic routes. Food Funct, 2017;8(11):3831-46.
  • 9. Bonet ML, Ribot J, Galmés S, Serra F, Palou A. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Preclinical and human studies. BBA-Mol Cell Biol L, 2020:158676.
  • 10. Quesada I, de Paola M, Torres-Palazzolo C, Camargo A, Ferder L, Manucha W, et al. Effect of Garlic’s Active Constituents in Inflammation, Obesity and Cardiovascular Disease. Curr Hypertens Rep, 2020;22(1):6.
  • 11. Ghaedi E, Varkaneh HK, Rahmani J, Mousavi SM, Mohammadi H, Fatahi S, et al. Possible antiobesity effects of phytosterols and phytostanols supplementation in humans: A systematic review and dose–response meta‐analysis of randomized controlled trials. Phytother Res, 2019;33(5):1246-57.
  • 12. Howes MJ, Simmonds MS. The role of phytochemicals as micronutrients in health and disease. Curr Opin Clin Nutr Metab Care, 2014;17(6):558-66.
  • 13. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr, 2004;79(5):727- 47.
  • 14. Büyük İ, Soydam-Aydın S, Aras S. Bitkilerin stres koşullarına verdiği moleküler cevaplar. Turk Hij Den Biyol Derg, 2012;69(2).
  • 15. Lewandowska H, Kalinowska M, Lewandowski W, Stępkowski TM, Brzoska K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J Nutr Biochem, 2016;32:1-19.
  • 16. Wang W, Pan Y, Wang L, Zhou H, Song G, Wang Y, et al. Optimal Dietary Ferulic Acid for Suppressing the Obesity-Related Disorders in Leptin-Deficient Obese C57BL/6J -ob/ob Mice. J Agric Food Chem, 2019;67(15):4250-8.
  • 17. Naowaboot J, Piyabhan P, Munkong N, Parklak W, Pannangpetch P. Ferulic acid improves lipid and glucose homeostasis in high‐fat diet‐induced obese mice. Clin Exp Pharmacol Physiol, 2016;43(2):242-50.
  • 18. De Melo T, Lima P, Carvalho K, Fontenele T, Solon F, Tomé A, et al. Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. Braz J Med Biol Res, 2017;50(1).
  • 19. Aguirre L, Fernández-Quintela A, Arias N, Portillo MP. Resveratrol: anti-obesity mechanisms of action. Molecules, 2014;19(11):18632-55.
  • 20. Kang NE, Ha AW, Kim JY, Kim WK. Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3T3-L1 preadipocytes. Nutr Res Pract, 2012;6(6):499-504.
  • 21. Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct, 2014;5(6):1241-9.
  • 22. Gómez-Zorita S, Fernández-Quintela A, Lasa A, Hijona E, Bujanda L, Portillo MP. Effects of resveratrol on obesity-related inflammation markers in adipose tissue of genetically obese rats. Nutrition, 2013;29(11-12):1374-80.
  • 23. Andrade JMO, Frade ACM, Guimarães JB, Freitas KM, Lopes MTP, Guimarães ALS, et al. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur J Nutr, 2014;53(7):1503-10.
  • 24. Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stødkilde-Jørgensen H, et al. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes, 2013;62(4):1186-95.
  • 25. Mousavi S, Milajerdi A, Sheikhi A, Kord‐Varkaneh H, Feinle‐Bisset C, Larijani B, et al. Resveratrol supplementation significantly influences obesity measures: a systematic review and dose–response meta‐analysis of randomized controlled trials. Obes Rev, 2019;20(3):487-98.
  • 26. Kim CY, Le TT, Chen C, Cheng J-X, Kim K-H. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J Nutr Biochem, 2011;22(10):910-20.
  • 27. Ding L, Li J, Song B, Xiao X, Zhang B, Qi M, et al. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol Appl Pharmacol, 2016;304:99-109.
  • 28. Shao W, Yu Z, Chiang Y, Yang Y, Chai T, Foltz W, et al. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PloS One, 2012;7(1):e28784
  • 29. Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental-Mendia LE, Majeed M, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A posthoc analysis of a randomized controlled trial. Biomed Pharmacother, 2016;82:578-82.
  • 30. Kang J, Park J, Kim H-L, Jung Y, Youn D-H, Lim S, et al. Secoisolariciresinol diglucoside inhibits adipogenesis through the AMPK pathway. Eur J Pharmacol, 2018;820:235-44.
  • 31. Kang J, Park J, Park WY, Jiao W, Lee S, Jung Y, et al. A phytoestrogen secoisolariciresinol diglucoside induces browning of white adipose tissue and activates non-shivering thermogenesis through AMPK pathway. Pharmacol Res, 2020:104852.
  • 32. Penalvo J, Moreno-Franco B, Ribas-Barba L, Serra-Majem L. Determinants of dietary lignan intake in a representative sample of young Spaniards: association with lower obesity prevalence among boys but not girls. Eur J Clin Nutr, 2012;66(7):795-8.
  • 33. Barre D, Mizier-Barre K, Stelmach E, Hobson J, Griscti O, Rudiuk A, et al. Flaxseed lignan complex administration in older human type 2 diabetics manages central obesity and prothrombosis—an invitation to further investigation into polypharmacy reduction. J Nutr Metab, 2012;2012.
  • 34. Leiherer A, Stoemmer K, Muendlein A, Saely CH, Kinz E, Brandtner EM, et al. Quercetin impacts expression of metabolism-and obesityassociated genes in SGBS adipocytes. Nutrients, 2016;8(5):282.
  • 35. Jung CH, Cho I, Ahn J, Jeon TI, Ha TY. Quercetin reduces high‐fat diet‐induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother Res, 2013;27(1):139-43.
  • 36. Seo M-J, Lee Y-J, Hwang J-H, Kim K-J, Lee B-Y. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J Nutr Biochem, 2015;26(11):1308-16.
  • 37. Lee J-S, Cha Y-J, Lee K-H, Yim J-E. Onion peel extract reduces the percentage of body fat in overweight and obese subjects: a 12-week, randomized, double-blind, placebo-controlled study. Nutr Res Pract, 2016;10(2):175-81.
  • 38. Pfeuffer M, Auinger A, Bley U, Kraus-Stojanowic I, Laue C, Winkler P, et al. Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms. Nutr Metab Cardiovasc Dis, 2013;23(5):403-9.
  • 39. Chen YK, Cheung C, Reuhl KR, Liu AB, Lee MJ, Lu YP, et al. Effects of green tea polyphenol (-)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem, 2011;59(21):11862-71.
  • 40. Klaus S, Pültz S, Thöne-Reineke C, Wolfram S. Epigallocatechin gallate attenuates dietinduced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes, 2005;29(6):615-23.
  • 41. Suzuki T, Pervin M, Goto S, Isemura M, Nakamura Y. Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules, 2016;21(10):1305.
  • 42. Basu A, Sanchez K, Leyva MJ, Wu M, Betts NM, Aston CE, et al. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr, 2010;29(1):31-40.
  • 43. Matsukawa T, Inaguma T, Han J, Villareal MO, Isoda H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J Nutr Biochem, 2015;26(8):860-7.
  • 44. Wei X, Wang D, Yang Y, Xia M, Li D, Li G, et al. Cyanidin-3-O-beta-glucoside improves obesity and triglyceride metabolism in KK-Ay mice by regulating lipoprotein lipase activity. J Sci Food Agric, 2011;91(6):1006-13.
  • 45. Sudhakaran M, Doseff AI. The Targeted Impact of Flavones on Obesity-Induced Inflammation and the Potential Synergistic Role in Cancer and the Gut Microbiota. Molecules, 2020;25(11):2477.
  • 46. Zhang L, Han YJ, Zhang X, Wang X, Bao B, Qu W, et al. Luteolin reduces obesity-associated insulin resistance in mice by activating AMPKalpha1 signalling in adipose tissue macrophages. Diabetologia, 2016;59(10):2219-28.
  • 47. Xu N, Zhang L, Dong J, Zhang X, Chen YG, Bao B, et al. Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol Nutr Food Res, 2014;58(6):1258-68.
  • 48. Karim N, Jia Z, Zheng X, Cui S, Chen W. A recent review of citrus flavanone naringenin on metabolic diseases and its potential sources for high yield-production. Trends Food Sci Technol, 2018;79:35-54.
  • 49. Cho KW, Kim YO, Andrade JE, Burgess JR, Kim Y-C. Dietary naringenin increases hepatic peroxisome proliferators–activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats. Eur J Nutr, 2010;50(2):81-8.
  • 50. Assini JM, Mulvihill EE, Burke AC, Sutherland BG, Telford DE, Chhoker SS, et al. Naringenin prevents obesity, hepatic steatosis, and glucose intolerance in male mice independent of fibroblast growth factor 21. Endocrinology, 2015;156(6):2087-102.
  • 51. Kurrat A, Blei T, Kluxen FM, Mueller DR, Piechotta M, Soukup ST, et al. Lifelong exposure to dietary isoflavones reduces risk of obesity in ovariectomized Wistar rats. Mol Nutr Food Res, 2015;59(12):2407-18.
  • 52. Llaneza P, Gonzalez C, Fernandez-Inarrea J, Alonso A, Diaz F, Arnott I, et al. Soy isoflavones, diet and physical exercise modify serum cytokines in healthy obese postmenopausal women. Phytomedicine, 2011;18(4):245-50.
  • 53. Kameji H, Mochizuki K, Miyoshi N, Goda T. beta- Carotene accumulation in 3T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factoralpha. Nutrition, 2010;26(11-12):1151-6.
  • 54. Luvizotto RdAM, Nascimento AF, Imaizumi E, Pierine DT, Conde SJ, Correa CR, et al. Lycopene supplementation modulates plasma concentrations and epididymal adipose tissue mRNA of leptin, resistin and IL-6 in diet-induced obese rats. Br J Nutr, 2013;110(10):1803-9.
  • 55. Sluijs I, Beulens JW, Grobbee DE, van der Schouw YT. Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men. J Nutr, 2009;139(5):987-92.
  • 56. Lii CK, Huang CY, Chen HW, Chow MY, Lin YR, Huang CS, et al. Diallyl trisulfide suppresses the adipogenesis of 3T3-L1 preadipocytes through ERK activation. Food Chem Toxicol, 2012;50(3- 4):478-84.
  • 57. Kim MJ, Kim HK. Effect of garlic on high fat induced obesity. Acta Biol Hung, 2011;62(3):244- 54.
  • 58. Suzuki K, Konno R, Shimizu T, Nagashima T, Kimura A. A fermentation product of phytosterol including campestenone reduces body fat storage and body weight gain in mice. J Nutr Sci Vitaminol (Tokyo), 2007;53(1):63-7.
  • 59. Rideout TC, Harding SV, Jones PJ. Consumption of plant sterols reduces plasma and hepatic triglycerides and modulates the expression of lipid regulatory genes and de novo lipogenesis in C57BL/6J mice. Mol Nutr Food Res, 2010;54(S1):S7-S13.
  • 60. Buyuktuncer Z, Fisunoğlu M, Guven GS, Unal S, Besler HT. The cholesterol lowering efficacy of plant stanol ester yoghurt in a Turkish population: a double-blind, placebo-controlled trial. Lipids Health Dis, 2013;12(1):91.
Türk Hijyen ve Deneysel Biyoloji Dergisi-Cover
  • ISSN: 0377-9777
  • Başlangıç: 1938
  • Yayıncı: Türkiye Halk Sağlığı Kurumu
Sayıdaki Diğer Makaleler

Kandidemide epidemiyolojik özellikler, risk faktörleri ve klinik gidişin değerlendirilmesi

Duru MISTANOĞLU ÖZATAĞ, Pınar KORKMAZ, Aynur GÜLCAN, Halil ASLAN, Şevket YALIN

Farklı esansiyel yağların in vitro antimikrobiyal etkinliğinin değerlendirilmesi

Ayşe Hümeyra TAŞKIN KAFA, Mürşit HASBEK, Cem ÇELİK, Rukiye ASLAN

Turhal Devlet Hastanesi’ne kene ısırması ile başvuran olguların değerlendirilmesi

Sedef Zeliha ÖNER, Emine TÜRKOĞLU

Ankara ve Kaş yöresindeki kedilerde Toxoplasma gondii seropozitifliğinin Sabin-Feldman boya testi ile araştırılması

Cahit BABÜR, Banuçiçek YÜCESAN, Özcan ÖZKAN, Gül Bengisu GÜREL

Trichomoniasis in pregnant women in South-East Iran: Diagnosis, frequency and factors affecting

Soudabeh ETEMADI, Alireza SALIMI KHORASHAD, Vahid RAISSI, Anita Saleh MOHAMMADZADE, Omid RAIESI, Maryam Mansouri NIA, Sadigheh Nouri DALIR

Hastanemiz cerrahi kliniklerine başvuran hastalarda preoperatif HBsAg, anti-HCV ve anti-HIV seroprevalansı

Hakan İGAN, Hayrunisa HANCI

Geriatrik enfeksiyonların epidemiyolojisi ve mortaliteye etkili faktörler

Sabahat ÇEKEN, Duygu MERT, Göknur YAPAR TOROS, Yüksel KOLUKISA, Habip GEDİK, Gülşen İSKENDER, Mustafa ERTEK

Obezitenin önlenmesi ve tedavisinde diyet fitokimyasallarının olası rolleri

Zehra BÜYÜKTUNCER, Büşra TURAN DEMİRCİ

Van yöresinde izole edilen dermatofitlerde tür tayini

Hasan IRMAK, Hamza BOZKURT

Evaluation of immunoblotting test results in patients with positive antinuclear antibodies

Demet GÜR VURAL, Yeliz TANRIVERDİ ÇAYCI, İlknur BIYIK, Kemal BİLGİN, Asuman BİRİNCİ