Engeller teknolojisinde bakteriyosinlerin kullanımı

Gıdaların muhafazasında tek bir yöntemin kullanımı yerine birden fazla yöntemin birlikte kullanımının daha iyi sonuçlar verdiği bilinmektedir. Engeller teknolojisi olarak adlandırılan bu teknik, birçok muhafaza yöntemini bünyesinde barındırmaktadır. Engeller teknolojisinde antimikrobiyal maddelerin kullanımı da mümkündür. Bakteriler tarafından üretilen ve gıdalarda özellikle Gram pozitif bakterilere karşı inhibitör etkileri bulunan bakteriyosinlerin bu amaçla kullanımı üzerinde yoğunlaşan çalışmalar bulunmaktadır. Bakteriyosinlerin antibiyotikler ile benzer oldukları düşünülse de gıdalarda antibiyotik kullanımının sınırlı olması ve bakteriyosinlerin insan vücudunda parçalanabilen bileşikler olması bu antimikrobiyal peptitleri daha avantajlı kılmaktadır. Birçok bakteri türü bakteriyosin üretme yeteneğinde olup, ürettikleri bakteriyosinler daha çok yakın türlerine karşı antimikrobiyal etki göstermektedir. Bakteriyosinlerin doğal biyokoruyucu olmalarından dolayı üzerlerinde pek çok çalışma yapılmasını sağlamıştır. Ancak gıdaların raf ömrünü uzatmak amacıyla kullanılan bakteriyosinler, genellikle sadece Gram pozitif bakterilere karşı inhibitör etki gösterebilmektedirler. Bu durum Gram negatif patojenlerin inhibisyonu için sorun teşkil etse de, aslında gıdalarda Gram negatif patojenlerin inhibisyonunda bakteri hücrelerinin parçalanmasını, koruyucu tabaka olan dış membranın kısmen bozulmasını sağlayacak diğer engeller ya da uygulamalar ile birlikte kullanılabilirler. Birçok bakteriyosin diğer kimyasal koruyucuları, doğal fenolik bileşikleri ve diğer antimikrobiyal proteinleri de içeren antimikrobiyal maddelerle kombine halde kullanıldığında destekleyici ya da sinerjetik etki gösterebilmektedir. Bu uygulama şekli ya da farklı bakteriyosinlerin birlikte kullanımı dirençli mikroorganizmalara karşı etkili bir inhibisyon ortaya koyabilmektedir. Bakteriyosinlerin yüksek basınç uygulaması gibi fiziksel uygulamalar ile kombinasyonu gıda muhafazasında oldukça iyi sonuçlar sunabilmektedir. Bu güne kadar daha çok bakteriyosinlerin ortam pHsını düşüren bileşiklerle veya etilen dramin tetraasetik asit (EDTA) benzeri kimyasallarla birlikte kullanımları denenmiştir. Bu derlemede, bakteriyosinlerin diğer koruyucu sistemlerle birlikte kullanımı, başka bir deyişle engeller sistemi kapsamındaki farklı kullanımları özetlenmeye çalışılmıştır.

Usage of bacteriocins in hurdle technology

It is known that instead of using a single method for food preservation, use of multiple methods provides better results. These multiple methods are known as hurdle technology and incorporate many preservation methods. In hurdle technology it is also possible to use antimicrobial agents. There is some research focusing on usage of bacteriocins which are produced by bacteria and have inhibitor effect against especially Gram positive bacteria for this purpose. Although it is thought bacteriocins are similar to antibiotics, because of usage of antibiotics in foods is limited and bacteriocins are degradable compounds in the human body makes the bacteriocins more advantageous. Many bacterial species produce bacteriocins, that often have an antimicrobial effect on closely related organisms. These compounds have been extensively studied because of being natural biopreservatives. Even when bacteriocins have been used to extend shelf-life of foods, in general they only show inhibitor effect against Gram positive bacteria. Though this is a problem for the inhibition of Gram negative pathogens, actually, bacteriocins can also be applied for the inactivation of Gram negative pathogens in foods in combination with other hurdles or treatments to induce cell damage and partial disorganization of the outer membrane protective layer. Several bacteriocins show additive or synergistic effects when used in combination with other antimicrobial agents, including chemical preservatives, natural phenolic compounds, as well as other antimicrobial proteins. This method, as well as the combined use of different bacteriocins can show an effective inhibition against resistance microorganisms. The combination of bacteriocins and physical treatments like high pressure processing also offer good results for more effective preservation of foods. To date, mostly using bacteriocins with the agents reducing the pH of the media or chemicals such as EDTA (ethylene diamine tetraacetic acid) are tested. In this review, different usage of the bacteriocins, in other words different usage of bacteriocins within the scope of hurdle technology have tried to summarize.

___

  • 1.Topal Ş. Gıda güvenliği ve kalite yönetim sistemleri, Kocaeli; TÜBİTAK Marmara Araştırma Merkezi Matbaası Basımı, 1996.
  • 2.Galvez A, Lopez RL, Abriouel H, Valdivia E, Omar NB. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol, 2008; 28: 125-52.
  • 3.Barbosa Canovas GV, Gongora-Nieto MM, Rodriguez JJ, Swanson BG. Nonthermal processing of foods and emerging technologies. In: Food Engineering: Encyclopedia of Life Support Sciences. Barbosa- Cánovas GV ed. Paris, EOLSS Publishers, 2005; 575-93.
  • 4.Anonymous. Food safetyFact Sheet Number 237.Organization, 2007. and foodborneGeneva, Worldillness. Health
  • 5. Bromberg R, Moreno I, Lopes Zaganini C, Delboni RR, de Oliveira J. Isolation of bacteriocin- producing lactic acid bacteria from meat and meat products and its spectrum of inhibitory activity. Braz J Microbiol, 2004; 35: 137-44.
  • 6. Javed I. Characterization of bacteriocin produced by lactic acid bacteria isolated from dairy products. PHD thesis, Department of Microbiology at Quaid-i-Azam University in Islamabad, 2009.
  • 7. Galvez A, Abriouel H, Lopez RL, Omar NB. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol, 2007; 120 (1-2): 51-70.
  • 8. Mills S, Stanton C, Hill C, Ross RP. New developments and applications of bacteriocins and peptides in foods. Annu Rev Food Sci Technol, 2011; 2: 299–329.
  • 9. Oshima S, Rea MC, Lothe S, Morgan S, Begley M, O’Connor PM, et al. Efficacy of organic acids, bacteriocins and the lactoperoxidase system in inhibiting the growth of Cronobacter spp. in rehydrated infant formula. J Food Prot, 2012; 75(10): 1734–42.
  • 10. Fadda S, Lopez C, Vignolo G. Role of lactic acid bacteria during meat conditioning and fermentation: peptides generated as sensorial and hygienic biomarkers. Meat Sci, 2010; 86(1): 66–79.
  • 11. Altuntas EG, Cosansu S, Ayhan K. Some growth parameters and antimicrobial activity of a bacteriocin-producing strain Pediococcus acidilactici 13. Int J Food Microbiol, 2010; 141(1- 2): 28-31.
  • 12. Anastasiadou S, Papagianni M, Filiousis G, Ambrosiadis I, Koidis P. Growth and metabolism of a meat isolated strain of Pediococcus pentosaceus in submerged fermentation: purification, characterisation and properties of the produced pediocin SM-1. Enzyme Microb Tech, 2008; 43(6): 448–54.
  • 13. Ayhan K, Coşansu S, Mol S, Güneş E. Sucuktan izole edilen laktik asit bakterilerinin antimikrobiyal özelliklerinin belirlenmesi ve bakteriyosin üreten türlerin seçimi. Proje numarası:2007-0745- 001HPD, Ankara Üniversitesi Bilimsel Araştırma Projeleri Fonu, 2008.
  • 14.De Martinis ECP, Freitas FZ. Screening of lactic acid bacteria from Brazilian meats for bacteriocin formation. Food Control, 2003; 14:197–200.
  • 15.Ayhan K, Aydar LY, Durlu F, Tunail N. Lactococcus lactis subsp. LL37 suşunun nisin üretiminde fermentasyon parametrelerinin belirlenmesi ve nisinin preparasyonu. KÜKEM Derg, 1996; 19(2): 49-58.
  • 16.Adams M. Nisin in multifactorial food preservation. In: Roller S, ed. Natural Antimicrobials for The Minimal Processing of Foods. Chapter 2. Woodhead Publishing Roller, 2003; 306.
  • 17. Ray B, Miller W. Bacteriocins other than nisin: The pediosin-like cystibiotics of lactic acid bacteria. In: Roller S, ed. Natural Antimicrobials for The Minimal Processing of Foods. Chapter 4. Woodhead Publishing Roller, 2003; 306.
  • 18.Parada JL, Caron CR, Medeiros ABP, Soccol CR. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol, 2007; 50(3): 521-42.
  • 19.Hite BH. The effect of pressure in the preservation of milk. Bull W Virginia Univ Agr Exp Stat, 1899; 58: 15-55.
  • 20.Alpas H, Bozoglu F. The combined effect of high hydrostatic pressure, heat and bacteriocins on inactivation of foodborne pathogens in milk and orange juice. World J Microbiol Biotechnol, 2000; 16: 387-92.
  • 21.Arques JL, Rodriguez E, Gaya P, Medina M, Guamis B, Nunez M: Inactivation of Staphylococcus aureus in raw milk cheese by combinations of high- pressure treatments and bacteriocin producing lactic acid bacteria. J Appl Microbiol, 2005; 98(2):254–60.
  • 22.Rodriguez E, Arques JL, Nunez M, Gaya P, Medina M. Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw- milk cheese. Appl Environ Microbiol, 2005; 71(7): 3399–404.
  • 23. Avila M, Garde S, Gaya P, Medina M, Nunez M. Effect of high-pressure treatment and a bacteriocin-producing lactic culture on the proteolysis, texture, and taste of Hispánico cheese. J Dairy Sci, 2006; 89(8): 2882-93.
  • 24. Kalchayanand N, Dunne CP, Sikes A, Ray B. Inactivation of bacterial spores by combined action of hydrostatic pressure and bacteriocins in roast beef. J Food Saf, 2003; 23(4):219-31.
  • 25. Garriga M, Aymerich MT, Costa S, Monfort JM, Hugas M. Bactericidal synergism through bacteriocins and high pressure in a meat model systemduring storage. Food Microbiol, 2002; 19(5):509-18.
  • 26.Belfiore C, Castellano P, Vignolo G. Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. Food Microbiol, 2007; 24(3):223–9.
  • 27.Anonymous. Diquat in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva; World Health Organization (WHO) (WHO/SDE/WSH/03.04/91), 2003.
  • 28. Aslam M, Shahid M, Rehman FU, Naveed NH, Batool AI, Sharif S, et al. Purification and characterization of bacteriocin isolated from Streptococcus thermophilus. Afr J Microbiol Res, 2011; 5(18): 2642-8.
  • 29. Todorov SD, Dicks LMT. Bacteriocin production by Lactobacillus pentosus ST712BZ isolated from boza. Braz J Microbiol, 2007; 38(1):166-72.
  • 30. Martin-Visscher LA, Yoganathan S, Silt CS, Lohans CT, Vederas JC. The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against Gram-negative bacteria in combination with EDTA treatment. FEMS Microbiol Lett, 2011; 317(2): 152–9.
  • 31.Pinto AL, Fernandes M, Pinto C, Albano H, Catilho F, Teixeira P, et al. Characterization of anti-Listeria bacteriocins isolated from shellfish: potential antimicrobials to control non-fermented seafood. Int J Food Microbiol, 2009; 129(1): 50-8.
  • 32. Abriouel H, Valdivia E, Galvez A, Maqueda M. Response of Salmonella choleraesuis LT2 spheroplasts and permeabilized cells to the bacteriocin AS-48. Appl Environ Microbiol, 1998; 64(11): 4623–6.
  • 33. Elamathy S, Kanchana D. Characterization of heat stable and inhibitory activity of bacteriocin produced by Lactobacillus acidophilus. Int J ChemTech Res, 2013; 5(3): 1281-3.
  • 34.Bizani D, Motta AS, Morrissy JA, Terra RM, Souto AA, Brandelli A. Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. Int Microbiol, 2005; 88(2):125-31.
  • 35. Castellano P, Belfiore C, Fadda S, Vignolo G. A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Sci, 2008; 79(3): 483–99.
  • 36. Liu L, Jin T, Coffin DR, Liu CK, Hicks KB. Poly (lactic acid) membranes containing bacteriocins and EDTA for inhibition of the surface growth of Gram-negative bacteria. J Appl Polym Sci, 2010; 117(1): 486–92.
  • 37. Leroy F, De Vuyst L. A combined model to predict the functionality of the bacteriocin-producing Lactobacillus sakei strain CTC 494. Appl Environ Microbiol, 2003; 69(2): 1093–9.
  • 38. Leroy F, De Vuyst L. Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. Int J Food Microbiol, 2005; 100(1-3): 141–52.
  • 39.Castellano P, Belfiore C, Vignolo G. Combination of bioprotective cultures with EDTA to reduce Escherichia coli O157:H7 in frozen ground-beef patties. Food Control, 2011; 22(8): 1461-5.
  • 40. Iversen C. Waddington M, On SL, Forsythe S. Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter species. J Clinic Microbiol, 2004; 42(11): 5368–70.
  • 41. Drudy D, Mullane NR, Quinn T, Wall PG, Fanning S. Enterobacter sakazakii: an emerging pathogen in powdered infant formula. Clin Infect Dis, 2006; 42(7): 996–1002.
  • 42. Gotteland M, Brunser O, Cruchet S. Inhibition of H. pylori by organic acid and bacteriocin- producing probiotics. Aliment Pharmacol Ther, 2006; 23(8): 1077-86.
  • 43. Turgis M, Vu KD, Dupont C, Lacroix M. Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Res Int, 2012; 4882: 696-702.