Sıcak Presleme Yöntemi ile TZ72-xMn Magnezyum Alaşımlarının Üretimi: Karakterizasyon ve Mekanik Özellikler

Magnezyumun toz metalürjisinde kullanımını sınırlayıcı etmenler vardır. Toz halindeki Mg havayla temasında çabuk oksitlenebilmekte ve karıştırma gibi proseslerde tozların birbirlerine temasından kaynaklanan sürtünmeden dahi tutuşma riskini bünyesinde barındırmaktadır. Mg alaşımlarının toz metalurjisi yöntemiyle üretimini kolay kılacak önlemlerin sağlanmasına ve yeni Mg alaşımlarının bu yöntemlerle üretilmesine ihtiyaç vardır. Bu çalışmada, farklı oranlarda Mn içeriğine sahip Mg7Sn2Zn-xMn magnezyum alaşımları sıcak presleme yöntemiyle başarılı bir şekilde üretilmiş ve Mn ilavesinin mikroyapı ve mekanik özelliklere etkisi incelenmiştir. Tozların karıştırılması öncesinde Mg alaşımlarına kaplama tekniği uygulanmıştır. Alaşımların üretiminde sıcak presleme ve grafit kalıp sistemi kullanılmıştır. Sinterleme işlemleri argon koruyucu gaz atmosferinde gerçekleştirilmiştir. Üretilen Mg alaşımlarına, yoğunluk ölçümü, metalografik analizler ve çekme testleri uygulanmıştır. Elde edilen sonuçlara göre, sıcak presleme yöntemiyle üretilen alaşımlardan ölçülen yoğunluk değerleri teorik yoğunluk değerlerine oldukça yakındır (%98,97 ve üzeri bağıl yoğunluk). Basınç ve sinterleme proseslerinin eş zamanlı uygulanması sayesinde gözeneksiz mikroyapıya sahip alaşımlar üretilmiştir. Mikroyapıda ikincil intermetalik fazlar tespit edilmiş ve bu fazların tane sınırlarında yoğunlaştığı fark edilmiştir. Alaşımların hem dayanım hem de süneklik özellikleri artan Mn oranına bağlı olarak geliştirilmiştir. En yüksek çekme dayanımı (217,2 MPa) TZM720-B alaşımından elde edilmiştir.

Production of TZ72-xMn Magnesium Alloys Through Hot Pressing Method: Characterization and Mechanical Properties

There are limiting factors for the use of magnesium in powder metallurgy. Powdered Mg can oxidize quickly in contact with air and it has the risk of ignition even from friction caused by the contact of powders to each other in processes such as mixing. There is a need to provide measures to make the production of Mg alloys by powder metallurgy method easier and to produce new Mg alloys by these methods. In this study, Mg7Sn2Zn-xMn magnesium alloys with different ratios of Mn content were successfully produced by hot pressing method and the effect of Mn addition on microstructure and mechanical properties was investigated. Coating technique was applied to Mg alloys before mixing the powders. Hot pressing and graphite mold system are used in the production of alloys. Sintering processes were carried out in argon protective gas atmosphere. Density measurement, metallographic analysis and tensile tests were applied to the produced Mg alloys. According to the results obtained, the density values measured from the alloys produced by the hot pressing method are very close to the theoretical density values (relative densities with 98.97% and above). Alloys with non-porous microstructure were produced due to the simultaneous application of pressure and sintering processes. Secondary intermetallic phases were determined in the microstructure and it was noticed that these phases were concentrated at the grain boundaries. Both the strength and ductility properties of the alloys are developed depending on the increasing Mn ratio. The maximum tensile strength (217.2 MPa) was obtained from TZM720-B alloy.

___

  • [1] Hu XS, Wu K, Zheng MY. Effect of heat treatment on the stability of damping capacity in hypoeutectic Mg-Si alloy. Scripta Materialia. 2006;54(9):1639-1643.
  • [2] Laser T, Hartig CH, Nürnberg MR, Letzig D, Bormann R. The influence of calcium and cerium mischmetal on the microstructural evolution of Mg-3Al-1Zn during extrusion and resulting mechanical properties. Acta Materialia. 2008;56(12):2791-2798.
  • [3] Tong LB, Zheng MY, Xu SW, Kamado S, Du YZ, Hu XS, Wu K, Gan WM, Brokmeier HG, Wang GJ, Lv XY. Effect of Mn addition on microstructure, texture and mechanical properties of Mg-Zn-Ca alloy. Mater Sci Eng A. 2011;528:3741-3747.
  • [4] Khan SA, Miyashita Y, Mutoh Y, Sajuri ZB. Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys. Mater Sci Eng A. 2006;420:315-321.
  • [5] Levi G, Avraham S, Zilberov A, Bamberger M. Solidification, solution treatment anda ge hardening of a Mg-1.6wt.%Ca-3.2wt.%Zn alloy. Acta Materialia. 2006;54(2):523-530.
  • [6] Özgün Ö, Aslantaş K, Erçetin A. Powder metallurgy Mg-Sn alloys: Production and characterization. Sci Iran. 2020;27:1255-1265.
  • [7] Liu H, Chen Y, Tang Y, Wei S, Niu G. The microstructure, tensile properties, and creep behavior of as-cast Mg-(1-10)%Sn alloys. J Alloy Compd. 2007;440(1-2):122-126.
  • [8] Ercetin A, Özgün Ö, Aslantas K, Aykutoğlu G. The microstructure, degradation behavior and cytotoxicity effect of Mg-Sn-Zn alloys in vitro tests. SN Appl Sci. 2020;2:173.
  • [9] Ercetin A, Özgün Ö, Aslantas K. Investigation of mechanical properties of Mg5Sn-xZn alloys produced through new method in powder metallurgy, J Test Eval. 2020;49 https://doi.org/10.1520/JTE20200020
  • [10] Gökçe A. Toz metalurjisi yöntemiyle Mg-Sn alaşımı üretimi ve karakterizasyonu. Acad Platform J Eng Sci. 2020;8:112-119.
  • [11] Zhou Y-Z, Wu P, Yang Y, Gao D, Feng P, Gao C, Wu H, Liu Y, Bian H, Shuai C. The microstructure, mechanical properties and degradation behavior of laser-melted MgSn alloys. J Alloy Compd. 2016;687:109–114.
  • [12] Shuai C, Zhou Y, Lin X, Yang Y, Gao C, Shuai X, Wu H, Liu X, Wu P, Feng P. Preparation and characterization of laser-melted Mg–Sn–Zn alloys for biomedical application. J Mater Sci Mater Med. 2017;28:1–8.
  • [13] Candan Ş, Çelik M, Candan E. AZ91 magnezyum alaşımında soğuma hızlarının mekanik ve korozyon özelliklerine etkisi. Bilecik Seyh Edebali Univ Fen Bil Derg. 2014;1(2):17-28.
  • [14] Kalaycı F, Zubaroğlu E. Çift merdaneli sürekli döküm tekniği ile üretilmiş AZ ve AM serisi magnezyum alaşımlarının korozyon davranışlarının karşılaştırılması. MSU Fen Bil Derg. 2017;5(2):391-398.
  • [15] Jin L, Dong J, Wang R, Peng LM. Effects of hot Rolling processing on microstructures and mechanical properties of Mg-3%Al-1%Zn alloy sheet. Mater Sci Eng A. 2010;527(7-8):1970-1974.
  • [16] Zhang BP, Geng L, Huang LJ, Zhang XX, Dong CC. Enhanced mechanical properties in fine-grained Mg-1.0Zn-0.5Ca alloys prepared by extrusion at different temperatures. Scripta Mater. 2010;63(10):1024–1027.
  • [17] Garcés G, Müller A, O˜norbe E, Pérez P, Adeva P. Effect of hot forging on the microstructure and mechanical properties of Mg-Zn-Y alloy. J Mater Process Technol. 2010;206(1-3):99–105.
  • [18] Avinash L, Kumar H, Parthasarathy A, Varun Kumar KN, Sajjan B. The effect of ceramic reinforcement on the microstructure, mechanical properties and tribological behavior of Al-7.5%Si-0.5%Mg alloy. AMM 2017;867:3–9.
  • [19] Parthasarathy A, Avinash L, Varun Kumar KN, Sajjan B, Varun S. Fabrication and characterization of Al-0.4%Si-0.5%Mg - SiCp using permanent mould casting technique. AMM 2017;867:34–40.
  • [20] Lakshmi Narayana KS, Shivanand HK, SachinKumar P. Mechanical and tribological behavior of e-glass fiber reinforced aluminum matrix composites produced by stir casting: A review. Int J Mech Product Eng Res Develop. 2018;8(8):39-50.
  • [21] Ercetin A, Aslantaş K. The effect of different cutting parameters on cutting force, tool wear and burr formation in micro milling WCu composite material fabricated via powder metallurgy. Tr J Nature Sci. 2016;5(2):1-5.
  • [22] Ercetin A, Aslantaş K. Production of WCu electrical contact material via conventional powder metallurgy method: Characterization, mechanical and electrical properties. Tr J Nature Sci. 2017;6(1):37-42.
  • [23] Özgün Ö, Ercetin A. Microstructural and mechanical properties of Cr-C reinforced Cu matrix composites produced through powder metallurgy method. Tr J Nature Sci. 2017;6(2):1-6.
  • [24] Turan ME, Sun Y, Akgul Y. Mechanical, tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy. J Alloy Compd. 2018;740:1149-1158.
  • [25] Özgün Ö, Gülsoy HÖ. Toz enjeksiyon kalıplama yöntemi ile üretilen FeCo alaşımlarının mikroyapı ve mekanik özelliklerinin araştırılması. Tr J Nature Sci. 2020;9(1):6-11.
  • [26] Turan ME, Sun Y, Akgul Y, Turen Y, Ahlatci H. The effect of GNPs on wear and corrosion behaviors of püre magnesium. J Alloy Compd. 2017;724:14-23.
  • [27] Ercetin A, Aslantas K, Özgün Ö. Micro-end milling of biomedical TZ54 magnesium alloy produced through powder metallurgy. Mach Sci Technol. 2020;24(6):924-947.
  • [28] Nayyeri G, Mahmudi R. Enhanced creep properties of a cast Mg-5Sn alloy subjected to aging-treatment. Mater Sci Eng A. 2010;527:4613-4618.
  • [29] Wahba M, Katayama S. Laser welding of AZ31B magnesium alloy to Zn-coated steel. Mater Des. 2012;35:701-706.
  • [30] Qi F, Zhang D, Zhang X, Xu X. Effects of Mn addition and X-phase on the microstructure and mechanical properties of high-strength Mg-Zn-Y-Mn alloys. Mater Sci Eng A. 2014;593:70-78.
  • [31] Liao H, Kim J, Liu T, Tang A, She J, Peng P, Pan F. Effects of Mn addition on the microstructures, mechanical properties and work-hardening of Mg-1Sn alloy. Mater Sci Eng A. 2019;754:778-785.
  • [32] Yu Z, Tang A, Wang Q, Gao Z, He J, She J, Song K, Pan F. High strength and superior ductility of an ultra-fine grained magnesium–manganese alloy. Mater Sci Eng A. 2015;648:202-207.
Türk Doğa ve Fen Dergisi-Cover
  • ISSN: 2149-6366
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bingöl Üniversitesi Fen Bilimleri Enstitüsü