Erzurum Pasinler Bölgesi Perlitinin Geopolimer Üretiminde Kullanımının Araştırılması

Küresel ısınma ve iklim değişikliğine sebebiyet veren en önemli faktörlerden birisi atmosfere salınan CO2’dir. Bu gazın salınımının önemli bir miktarı (%6-8), dünyada en çok kullanılan yapı malzemesi olan çimento üretiminden kaynaklanmaktadır. Bu miktarın azaltılması amacıyla yaklaşık yirmi yıldır araştırmacılar, çimentoya alternatif sürdürülebilir bağlayıcı malzeme olan geopolimer üzerinde yoğun olarak çalışmaktadırlar. Geopolimerler, atık yan ürün olan uçucu kül, yüksek fırın cürufu vb. bir alümino-silikat kaynağı ve NaOH, Na2SiO3 vb. aktivatörlerden oluşmaktadır. Alümino silikat kaynağı olarak, amorf yapılı SiO2 ve Al2O3 içeren volkanik kül, kil, pomza vb. mineral malzemelerde kullanılmaktadır. Bu çalışmada ise, Erzurum Pasinler bölgesinde önemli miktarda bulunan ve alümino silikat içeren perlitten geopolimer üretimi araştırılmıştır. Bu amaçla temin edilen perlit, bağlayıcı olarak kullanılıp geopolimer betonlar üretilmiştir. Karışımlarda alkali aktivatör olarak yalnızca NaOH kullanılmıştır ve üretilen numunelere yapılan ön deneyler sonucunda 90°C’de 72 saat ısı kürü uygulanmıştır. Üretilen numunelerin su emme oranları, birim hacim ağırlıkları ve 3, 7, 28 ve 150 günlük basınç dayanımları tespit edilmiştir. Ayrıca numuneler %5 konsantrasyonlu HCl ve MgSO4 çözeltilerine, 50 çevrimlik donma-çözünme etkisine ve 300°C, 500°C ve 700°C yüksek sıcaklıklara maruz bırakılmıştır. Deneyler sonunda numunelerin mekanik ve fiziksel özellikleri tespit edilmiştir. Sonuç olarak, perlit esaslı geopolimer üretiminde aktivatör olarak NaOH tek başına kullanılarak 20,50 MPa basınç dayanımı elde edilmiştir. Durabilite açısından ise aynı dayanıma sahip normal Portland çimentolu betona göre iyi performans göstermiştir.

___

  • Nawaz, M., A. Heitor, and M. Sivakumar, Geopolymers in construction - recent developments. Construction and Building Materials, 2020. 260.
  • Duxson, P., et al., Geopolymer technology: The current state of the art. J. Mater. Sci., 2007. 42(9): p. 2917-2933.
  • Stafford, F.N., et al., Life cycle assessment of the production of cement: A Brazilian case study. Journal of Cleaner Production, 2016. 137: p. 1293-1299.
  • Davidovits, J., Geopolymers - Inorganic Polymeric New Materials. Journal of Thermal Analysis, 1991. 37(8): p. 1633-1656.
  • Wang, Y.S., et al., Phosphate-based geopolymer: Formation mechanism and thermal stability. Materials Letters, 2017. 190: p. 209-212.
  • Tchadjie, L.N. and S.O. Ekolu, Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. Journal of Materials Science, 2018. 53(7): p. 4709-4733.
  • Deventer, J.S.J., J.L. Provis, and P. Duxson, Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 2012. 29: p. 89-104.
  • Provis, J.L. and S.A. Bernal, Geopolymers and Related Alkali-Activated Materials. Annual Review of Materials Research, Vol 44, 2014. 44: p. 299-327.
  • Zhang, M., et al., Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 2013. 47: p. 1468-1478.
  • De Silva, P., K. Sagoe-Crenstil, and V. Sirivivatnanon, Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 2007. 37(4): p. 512-518.
  • Saavedra, W.G.V., D.E. Angulo, and R.M. de Gutierrez, Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack. Journal of Materials in Civil Engineering, 2016. 28(12).
  • Sagoe-Crentsil, K., T. Brown, and A. Taylor, Drying shrinkage and creep performance of geopolymer concrete. Journal of Sustainable Cement-Based Materials, 2013. 2(1): p. 35-42.
  • Hu, S.G., et al., Bonding and abrasion resistance of geopolymeric repair material made with steel slag. Cement & Concrete Composites, 2008. 30(3): p. 239-244.
  • Sakkas, K., et al., Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents. Materials, 2015. 8(9): p. 6096-6104.
  • Jiang, X., et al., Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures. Construction and Building Materials, 2020. 262(30).
  • Zhang, P., et al., Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders - A review. Journal of Cleaner Production, 2020. 258.
  • Jindal, B.B., Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Construction and Building Materials, 2019. 227.
  • Farhan, K.Z., M.A.M. Johari, and R. Demirboğa, Assessment of important parameters involved in the synthesis of geopolymer composites: A review. Construction and Building Materials, 2020. 264(20).
  • Taxiarchou, M., et al., "Study on the Suitability of Volcanic Amorphous Aluminosilicate Rocks (Perlite) for the Synthesis of Geopolymer-Based Concrete," in Geopolymer Binder Systems, ed. L. Struble and J. Hicks. (West Conshohocken, PA: ASTM International), 2013: p. 34-53.
  • Erdogan, S.T., Properties of Ground Perlite Geopolymer Mortars. Journal of Materials in Civil Engineering, 2015. 27(7).
  • Kozhukhova, N.I., I.V. Zhernovsky, and V.V. Strokova, Evaluation of geopolymer binders biopositivity based on low-calcium fly ash. International Journal of Applied Engineering Research, 2015. 10(15): p. 35527-35529.
  • Tsaousi, G.M., I. Douni, and D. Panias, Experimental Evaluation of Efficient Si Dissolution from Perlite at Low Level Activator's Concentration. Minerals, 2018. 8(4).
  • Yadollahi, M.M. and S. Varolgüneş, Polipropilen Liflerin Perlit Esaslı Geopolimerlerin Mekanik Davranışına Etkisi. Türk Doğa ve Fen Dergisi, 2018. 7(2): p. 36-41.
  • Yadollahi, M.M. and M. Dener, Investigation of elevated temperature on compressive strength and microstructure of alkali activated slag based cements. European Journal of Environmental and Civil Engineering, 2019.
  • Güzelküçük, S. and İ. Demir, Perlit Esaslı Geopolimer KompozitlereKür Süresi ve Sıcaklığın Etkisi. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 2019. 11(2): p. 730-737.
  • Ndjock, B.I.D.L., A. Elimbi, and M. Cyr, Rational utilization of volcanic ashes based on factors affecting their alkaline activation. Journal of Non-Crystalline Solids, 2017. 463: p. 31-39.
  • TSE, TS EN 933-1: Agregaların geometrik özellikleri için deneyler bölüm 1: Tane büyüklüğü dağılımı tayini- Eleme metodu. Türk Standartları Enstitüsü, Ankara, Türkiye. 2012.
  • TSE, TS EN 1097-6: Agregaların mekanik ve fiziksel özellikleri için deneyler bölüm 6: Tane yoğunluğuve su emme oranının tayini. Türk Standartları Enstitüsü, Ankara, Türkiye. 2013.
  • TSE, TS 802: Beton karışım tasarımı hesap esasları, Türk Standartları Ensitiüsü, Ankara, Tükiye. 2016.
  • Wallah, S.E. and B.V. Rangan, Low Calcium Fly Ash Based Geopolymer Concrete: Long Term Properties. . Research Report GC2, Faculty of Engineering, Curtin University of Technology., 2006.
  • TSE, TS EN 12390-3: Beton - Sertleşmiş beton deneyleri - Bölüm 3: Deney numunelerinin basınç dayanımının tayini, Türk Standartları Enstitüsü, Ankara, Türkiye. 2010.
  • ASTM C642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA, 2013, www.astm.org. 2013.
  • ASTM C666 / C666M, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, ASTM International, West Conshohocken, PA, 2015, www.astm.org. 2015.
  • ASTM C267-01, Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes, ASTM International, West Conshohocken, PA, 2012, www.astm.org. 2012.
  • ASTM C311 / C311M, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, ASTM International, West Conshohocken, PA, 2018, www.astm.org. 2018.
  • ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2019, www.astm.org. 2019.
  • Haddad, R.H. and O. Alshbuol, Production of geopolymer concrete using natural pozzolan: A parametric study. Construction and Building Materials, 2016. 114: p. 699-707.
  • Şinik, O., Geopolimer betonlarda dayanıklılık özelliklerinin araştırılması / The investigation of durability properties on geopolymer concretes, in Fen Bilimleri Enstitüsü / İnşaat Mühendisliği Anabilim Dalı / Yapı Malzemeleri Bilim Dalı. 2019, Afyon Kocatepe Üniversitesi.
  • Bingöl, Ş., Alkali İle Aktive Edilmiş Yüksek Fırın Cürufu Geopolimer Harçların Mekanik Ve Durabilite Özelliklerinin Araştırılması, in Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Bölümü. 2018, Erciyes Üniversitesi.
  • Zhang, T., et al., Development of a novel bio-inspired cement-based composite material to improve the fire resistance of engineering structures. Construction and Building Materials, 2019. 225: p. 99-111.
  • Barbosa, V.F.F. and K.J.D. MacKenzie, Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Materials Research Bulletin, 2003. 38(2): p. 319-331.
  • Martin, A., et al., Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers). Construction and Building Materials, 2015. 93: p. 1188-1196.
  • Zhu, H.J., et al., Surface-modification of fly ash and its effect on strength and freezing resistance of slag based geopolymer. Construction and Building Materials, 2019. 199: p. 574-580.
  • Slavik, R., et al., Preparation of geopolymer from fluidized bed combustion bottom ash. Journal of Materials Processing Technology, 2008. 200(1-3): p. 265-270.
  • Ekinci, E., et al., The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Construction and Building Materials, 2019. 201: p. 257-267.
  • Djobo, J.N.Y., et al., Mechanical properties and durability of volcanic ash based geopolymer mortars. Construction and Building Materials, 2016. 124: p. 606-614.
  • Ganeshan, M. and S. Venkataraman, Durability and microstructural studies on fly ash blended self-compacting geopolymer concrete. European Journal of Environmental and Civil Engineering, 2019.
  • Sate, V., A. Sathonsaowaphak, and P. Chindaprasirt, Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement & Concrete Composites, 2012. 34(5): p. 700-708.
Türk Doğa ve Fen Dergisi-Cover
  • ISSN: 2149-6366
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bingöl Üniversitesi Fen Bilimleri Enstitüsü