Aşılı ve aşısız patlıcan bitkilerinin tuzlu koşullardaki bazı fizyolojik ve verime yönelik parametreleri üzerinde incelemeler

    Bu çalışmada, aşılama yönteminin patlıcanda tuz stresinin zararlı etkilerini azaltma üzerindeki etkileri araştırılmıştır. Bu amaçla farklı anaç/kalem kombinasyonları denenmiştir. Bitkisel materyal olarak, 4 patlıcan genotipi (tuza tolerant: Mardin Kızıltepe, Burdur Merkez; tuza duyarlı: Artvin Hopa ve Kemer) ve 2 anaç (Köksal-F1, Vista-306) çeşit kullanılmıştır. Araştırma; sıcaklık ve nem kontrolü otomatik olarak sağlanan cam serada yürütülmüş, 6 dSm-1 NaCl solüsyonu ile sulama yapılarak tuz stresi meydana getirilmiştir. Yetiştirme dönemi sonunda tüm saksılardan alınan bitki örneklerinde stoma iletkenliği, yaprak su potansiyeli (YSP), toplam verim, ortalama meyve ağırlığı ve meyve çapı özellikleri belirlenmiştir. Tuz stresinden en fazla zarar gören materyal aşısız bitkiler olmuştur. Ticari anaçlar üzerine aşılama yapıldığında, tuz stresinin zararı hafiflemiştir. Aşılama, bitki başına toplam verim, ortalama meyve ağırlığı ve meyve çapı özellikleri bakımından tuz stresinin olumsuz etkilerini azaltmıştır. Kalem olarak kullanılan materyal tuza tolerant ise, bu etki daha da belirgin olmuştur. Çalışma sonucunda; aşılamanın, kullanılan anaca ve kalemin genotipine bağlı olarak tuzluluğun olumsuz etkilerini azalttığı ortaya konulmuştur.

___

  • [1] Rhoades J. D., Recent advances in the methodology for measuring and mapping soil salinity. Proc. International Symp. on Strategies for Utilizing Salt Affected Land, 17-25, Feb., Bangkok, Thailand, 1992.
  • [2] Taghipour F., Salahi M., The study of salt tolerance of Iranian barley (Hordeum vulgare L.) genotypes in seedling growth stages. Biological Diversity and Conservation. 1/2, 53-58, 2008.
  • [3] Brugnoli E., Lauteri M., Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-resistant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiology, 95, 628-635, 1991.
  • [4] Munns R., Tester M., Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681, 2008. [5] Maggio A., Raimondi G., Martino A., De Pascale S., Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 59, 276-282, 2007.
  • [6] Kuşvuran Ş., Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research, 7(5), 775-781, 2012.
  • [7] Ashraf M., Oleary J.W., Effect of drought stress on growth, water relations, and gas exchange of two lines of sunflower dıfferıng in degree of salt tolerance. International Journal of Plant, 157(6), 729-732, 1996.
  • [8] Sade N., Gebretsadik M., Seligmann R., Schwartz A., Wallach R., Moshelion M., The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiology, 152(1), 245-254, 2010.
  • [9] Eisa S., Hussin S., Geissler N., Koyro H.W., Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinea Wild.) as a potential cash crop halophyte. Australian Journal of Crop Science, 6(2), 357-368, 2012.
  • [10] Turhan A., Ozmen N., Serbeci M.S., Seniz V., Effects of grafting on different rootstocks on tomato fruit yield and quality, Horticultural Science (Prague), 38(4), 142-149, 2011.
  • [11] Ruiz J.M., Belakbir A., López-Cantarer I., Romero L., Leaf-macronutrient content and yield in grafted, melon plants. A model to evaluate the influence of rootstock genotype. Scientia Horticulturae, 71, 227-234, 1997.
  • [12] Huang Y., Bie Z.L., Liu Z.X., Zhen A., Jiao X.R., Improving cucumber photosynthetic capacity under NaCl stress by grafting onto two salt-tolerant pumpkin rootstocks. Biologia Plantarum, 55 (2), 285-290, 2011.
  • [13] FAO., Food and Agricultural Organization. Available at http://faostat3.fao.org/browse/Q/C/E. (Erişim tarihi: 27 Ağustos 2016), 2015.
  • [14] Anonim, The use of saline waters for crop production - FAO irrigation and drainage paper, 48, 29-30, 1992.
  • [15] Yaşar F., Tuz Stresi Altındaki Patlıcan Genotiplerinde Bazı Antioksidant Enzim Aktivitelerinin in vitro ve in vivo Olarak İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü (Doktora Tezi), Van, 2003.
  • [16] Kıran S., Özkay F., Kuşvuran Ş., Ellialtıoğlu Ş.Ş., Tuz Stresine Tolerans Seviyeleri Belirlenmiş Bazı Genotiplerin Kuraklık Stresine Tepkilerinin Belirlenmesi. Proje No: Tagem/A-02.P-04, Ankara, 2014.
  • [17] Kıran S., Kuşvuran Ş., Özkay F., Özgün Ö., Sönmez K., Özbek H., Ellialtıoğlu Ş.Ş., Bazı Patlıcan Anaçlarının Tuzluluk Stresi Koşullarındaki Gelişmelerinin Karşılaştırılması. Tarım Bilimleri Araştırma Dergisi, 8(1), 20-30, 2015.
  • [18] Köksal E., Üstün H., İlbeyi A., Bodur yeşil fasulyenin sulama zamanı göstergesi olarak yaprak su potansiyeli ve bitki su stres indeksi sınır değerleri. U.Ü. Ziraat Fakültesi Dergisi, 24(1), 25-36, 2010.
  • [19] Freed R., Einensmith S.P., Guets S., Reicosky D., Smail V.W., Wolberg P., User’s guide to MSTAT-C, an analysis of agronomic research experiment. Michigan State University, USA. 1989.
  • [20] Meloni D.A., Oliva M.A., Rui, H.A., Martinez C.A., Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 24, 599-612, 2001.
  • [21] Romero-Aranda R., Soria T., Cuartero J., Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science, 160, 265-272, 2001.
  • [22] Martinez-Ballesta M.C., Alcaraz-Lopez C., Murie, B., Mota-Cadenas C., Carvajal M., Physiological aspects of rootstock-scion interactions. Scientia Horticulturae, 127, 112-118, 2010.
  • [23] Fernandez-Garcia N., Martinez V., Carjaval M., Effect of salinity on growth, mineral composition and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science, 167, 616-622, 2004.
  • [24] Yokoi S., Bressan R. A., Hasegawa P.M., Salt Stress Tolerance of Plants. JIRCAS Working Report, 25-33, 2002.
  • [25] Kaymakanova M., Stoeva N., Physiological reaction of bean plants (Phaseolus vulgaris L.) to salt stress. General and Applied Plant Physiology, 34 (3-4), 177-188, 2008.
  • [26] Hossain M.M., Nonami H., Effect of salt stress on physiological response of tomato fruit grown in hydroponic culture system. Horticultural Science, 39(1), 26-32, 2012.
  • [27] El-Shraiy A., Mostafa M.A., Zaghlool S.A., Shehata S.A.M., Alleviation of salt injury of cucumber plant by grafting onto salt tolerance rootstock. Australian Journal of Basic and Applied Science, 5(10), 1414-1423, 2011.
  • [28] Orsini F., Sanoubar R., Öztekin G.B., Kappel N., Tepecik M., Quacquarelli C., Tüzel Y., Bona S., Gianquinto G., Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Functional Plant Biology, 40, 628-636, 2013.
  • [29] Yadav S., Irfan M., Ahmad A., Hayat S., Causes of salinity and plant manifestations to salt stress: A review. Journal of Environmental Biology, 32, 667-685, 2011.
  • [30] Nieves M., Cerda A., Botella M., Salt tolerance of lemon scions measured by leaf chloride and sodium accumulation. Journal of Plant Nutrition, 14, 623-636, 1991.
  • [31] Huang Y., Tan, R., Cao Q.L., Bie Z.L., Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Scientia Horticulturae, 122, 26-31, 2009.
  • [32] Wan S., Kang Y., Wang D., Lıu S.P., Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China. Agriculture Water Management, AGWAT-3097, 9, 2010.
  • [33] Ünlükara A., Kurunc A., Duygukesmez G., Yurtseven E., Suarez D.L., Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage, 59, 203-214, 2010.
  • [34] Rivero R.M., Ruiz J.M., Sanchez E., Romero L., Does grafting provide tomato plants an advantage against H2O2 production under conditions of thermal shock. Physiologia Plantarum, 117, 44-50, 2003.
  • [35] Leoni S., Grudina R., Cadinu M., Madeddu B., Garletti M.C., The influence of four rootstocks on some melon hybrids and a cultivar in greenhouse. Acta Horticulturae, 287, 127-134, 1990.
  • [36] Rouphael Y., Cardarelli M., Colla G., Re, E., Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience, 43, 730-736, 2008.
  • [37] Öztekin G.B., Aşılı Domates Bitkilerinde Tuz Stresine Karşı Anaçların Etkisi. Ege Üniversitesi Fen Bilimleri Enst. (Doktora Tezi), İzmir, 2009.
  • [38] Khah E.M., Kakava E., Mavromatis A., Chachalis D., Goulas C., Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8, 3-7, 2006.
  • [39] Turhan A., Seniz V., Kuscu H., Genotypic variation in the response of tomato to salinity. African Journal of Biotechnology, 8(6), 1062-1068, 2009.
  • [40] Bletsos, F.A., Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production. Scientia Horticulturae, 107, 325-331, 2003.
  • [41] Passam H.C., Stylianou M., Kotsiras A., Performance of eggplant grafted on tomato and eggplant rootstocks. European Journal of Horticultural Science, 70, 130-134, 2005.
  • [42] Gisbert C., Prohens J., Nue, F., Performance of eggplant grafted onto cultivated, wild, and hybrid materials of eggplant and tomato. International Journal of Plant Production, 5(4), 367-380, 2011.