Biyoreaktör Sistemleri Kullanılarak Sıvı Besiyeri Ortamında Sekonder Metabolit Üretimi için Tıbbi Bitkilerin Kitlesel Çoğaltımı: SETISTM And RITA®

Mikroçoğlatım teknikleri, bitkilerin kitlesel çoğaltımı için etkin ve önemli bir yöntemdir. Bazı kültür çeşitleri hala doku kültürü yöntemleriyle çoğaltıma direnç gösterse de, somatik ve zigotik embriyogenez, organogenez, mikroçoğaltım gibi başarılı uygulamalar, farklı bitki türlerinin farklı çeşitlerinden rapor edilmiştir. Başarılı otomasyon, yüksek kitlesel üretim, kolay manupulasyon, kültür ortam bileşenlerinin basit kalibrasyonu gibi avantajlara sahip olması nedeniyle in vitro sıvı kültür sistemleri, yarı katı sistemlere göre çok daha etkin sistemlerdir. Sıvı besiyeri kullanımına dayalı periyodik daldırma biyoreaktör sistemleri (TIS), düşük üretim maliyeti ve yüksek çoğaltım oranı gibi faydalar sağlamaktadır. Bu derleme çalışması, SETISTM ve RITA® gibi, iki farklı periyodik daldırma biyoreaktör sistemlerinin kullanımına dayalı geliştirilen mikroçoğaltım yöntemlerinin avantajlarını tanımlamayı amaçlamaktadır.

Mass Production of Medicinal Plants for Obtaining Secondary Metabolite Using Liquid Mediums Via Bioreactor Systems: SETISTM And RITA®

Micropropagation techniques provide effective and important ways for plant mass propagation. While some cultivated species are still accepted as comparatively resistant to tissue culture, there are a lot of successful applications of somatic and zygotic embriyogenesis, organaogenesis, micropropagation have been reported from different type of plant species. In vitro liquid culture systems are thought to be more efficient than semi-solid culture systems because of having great advantages of them such as successful automation, big mass production, easy handling, simple calibration of medium components and culture conditions. Temporary immersion bioreactor systems (TIS) based on liquid medium usage have been provided many utilities such as reduction of production cost and higher proliferation rate. This review aimed to describe advantages of micropropagation protocols developed using two different temporary immersion bioreactor systems, SETISTM and RITA®.

___

  • Paek, K.Y., Chakrabarty, D., Hahn, E.J. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult., 81: 287–300.
  • Sajc, L., Grubisic, D., Novakovic, G.V. 2000. Bioreactors for plant engineering: An out for further research. Biochem Eng J, 4: 89–99.
  • Bourgaud, F., Gravot, A., Milesi, S., Gonteir, E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Sci., 161: 839-851.
  • Ibaraki, Y., Kurata, K. 2001. Automation of somatic embryo production. Plant Cell Tissue Organ Cult., 65: 179–199.
  • Paek, K.Y., Chakrabarty, D. 2003. Micropropagation of woody plants using bioreactor. In: Jain, S.M., Ishii, K., eds. Micropropagation of woody trees and fruits. Kluwer Academic Publisher, The Netherland, 735-756.
  • Murashige, T., Skoog, F. 1962. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol Plant., 15(3): 473–497.
  • Takayama, S., Misawa, M. 1981. Mass propagation of Begonia x hiemalis plantlet by shake culture. Plant Cell Physiol., 22: 461–467.
  • Paek, K.Y., Hahn, E.J., Son, S.H. 2001. Application of bioreactors of large scale micropropagation systems of plants. In Vitro Cell Dev Biol Plant. - Plant, 37: 149–157.
  • Honda, H., Liu, C., Kobayashi, T. 2001. ‘‘Large scale plant propagation’’. In: Scheper, T. (ed) Advances in Biochemical Engineering/Biotechnology, SpringerVerlag Berlin, Heidelberg, 72: 157–182.
  • Heyerdahl, P.H., Olsen, O.A.S., Hvoslef-Eide, A.K. 1995. Engineering aspects of plant propagation in bioreactors. In: Aitken-Christie, J., Kozai, T., Smith, M.A.L.P., (Eds.) Automation and environmental control in plant tissue culture Kluwer Academic Pub. Dordrecht., 87–123.
  • Debnath, S. 2011. Bioreactors and molecular analysis in berry crop micropropagation - a review. Can J Plant Sci, 91: 147-157.
  • Yaseen, M., Ahmad, T., Sablok, G., Standardi, A. 2013. Role of carbon sources for in vitro plant growth and development. Molecular Biology Reports, 40: 2837–2849.
  • Steingroewer, J., Bley, T., Georgiev, V., Ivanov, I. 2013. Bioprocessing of differentiated plant in vitro systems. Eng Life Sci, 13: 26–38.
  • Georgiev, V., Schumann, A., Pavlov, A., Bley, T. 2014. Temporary immersion systems in plant biotechnology. Eng Life Sci, 14 (6): 607-621.
  • Etienne, H., Berthouly, M. 2002. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult., 69: 215-231.
  • Ducos, J.P., Terrier, B., Courtois, D. 2010. Disposable bioreactors for plant micropropagation and mass plant cell culture, in: Eibl, R., Eibl, D. (Eds.), Disposable Bioreactors, Springer, Berlin Heidelberg, Germany, 89-115.
  • Alvard, D., Côte, F., Teisson, C. 1993. Comparison of methods of liquid media culture for banana micropropagation. Effects of temporary immersion of explants. Plant Cell Tissue Organ Cult., 32: 55-60.
  • Leathers, R.R., Smith, M.A.L., Christie, A.J. 1995. Automation of the bioreactor process for mass propagation and secondary metabolism. In: Christie, J.A., Kozai, T., Smith, M.L. (eds) Automation and Environmental Control in Plant Tissue Culture. Kluwer Academic Publishers, Dordrecht, 187–214.
  • Lazzeri, P.A., Hildebrand, D.E., Collins, G.B. 1987. Soybean somatic embryogenesis: effects of nutritional, physical and chemical factors. Plant Cell Tissue Organ Cult., 10: 209–220.
  • Escalona, M., Lorenzo, J.C., Gonzalez, B., Daquinta, M., Gonzalez, J.L., Desjardins, Y., Borroto, C.G. 1999. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep., 18: 743–748.
  • Lian, M.L., Chakrabarty, D., Paek, K.Y. 2002. Growth and the uptake of sucrose and mineral ions by Lilium bulblets during bioreactor culture. J. Hortic. Sci. Biotechnol., 77: 253–257.
  • Huang, T.K., McDonald, K.A. 2012. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol. Adv., 30: 398–409.
  • Xu, J., Dolan, M.C., Medrano, G., Cramer, C.L. 2012. Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnol. Adv., 30: 1171–1184.
  • Michoux, F., Ahmad, N., McCarthy, J., Nixon, P.J. 2011. Contained and high-level production of recombinant protein in plant chloroplasts using a temporary immersion bioreactor. Plant Biotechnol. J., 9: 575–584.
  • Cui, X.H., Chakrabarty, D., Lee, E.J., Paek, K.Y. 2011. Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technology, 101(12): 4708-4716.
  • Jeong, J.A., Wu, C.H., Murthy, H.N., Hahn, E.J., Paek, K.Y. 2009. Application of an airlift bioreactor system for the production of adventitious root biomass and caffeic acid derivatives of Echinacea purpurea. Biotechnol. Bioproc. E., 14(1): 91-98.
  • Ahmed, S., Hahn, E.J., Paek, K.Y. 2008. Aeration volume and photosynthetic photon flux affect cell growth and secondary metabolite contents in bioreactor cultures of Morinda citrifolia. J. Plant Biol., 51(3): 209-212.
  • Chan, L.K., Koay, S.S., Boey, P.L., Bhatt, A. 2010. Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biol. Res., 43: 127-135.
  • He, Y., Ning, T., Xie, T., Qiu, Q., Zhang, L., Sun, Y., Jiang, D., Fu, K., Yin, F., Zhang, W., Shen, L., Wang, H., Li, J., Lin, Q., Sun, Y., Li, H., Zhu, Y., Yanga, D. 2011. Large-scale production of functional human serum albumin from transgenic rice seeds. Proceedings of the National Academy of Sciences, 108(47): 19078–19083.
  • Liu, C., Towler, M.J., Medrano, G., Cramer, C.L., Weathers, P. 2009. Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol Bioeng, 102(4): 1074-1086.
  • Ganapathi, T.R., Sunil Kumar, G.B., Srinivas, L., Revathi, C.J., Bapat, V.A. 2007. Analysis of the limitations of hepatitis B surface antigen expression in soybean cell suspension cultures. Plant Cell Rep., 26 (9): 1575-1584.
  • Huang, T.K., Plesha, M.A., McDonald, K.A. 2010. Semicontinuous bioreactor production of a recombinant human therapeutic protein using a chemically inducible viral amplicon expression system in transgenic plant cell suspension cultures. Biotechnol Bioeng, 106 (3): 408-421.
  • Kim, N.S., Kim, T.G., Kim, O.H., Ko, E.M., Jang, Y.S., Jung, Y.S., Kwon, T.H., Yang, M.S. 2008. Improvement of recombinant hGM-CSF production by suppression of cysteine proteinase gene expression using RNA interference in a transgenic rice culture. Plant Mol. Biol., 68: 263-275.
  • Osuna, L., Moyano, E., Mangas, S., Bonfill, M., Cusidó, R.M., Piñol, M.T., Zamilpa, A., Tortoriello, J., Palazón, J. 2008. Immobilization of Galphimia glauca Plant Cell Suspensions for the Production of Enhanced Amounts of Galphimine-B. Planta Med., 74(1): 94-99.
  • Smolenskaya, I., Reshetnyak, O., Nosov, A., Zoriniants, S., Chaiko, A., Smirnova, Y. 2007. Ginsenoside production, growth and cytogenetic characteristics of sustained Panax japonicus var. repens cell suspension culture. Biol. Plantarum, 51: 235–241.
  • Watt, M.P. 2012. The status of temporary immersion system (TIS) technology for plant micropropagation. Afr. J. Biotechnol., 11(76): 14025-14035.
  • McAlister, B., Finnie, J., Watt, MP., Blake Way, F.C. 2005. Use of temporary immersion bioreactor system (RITA®) for the production of commercial Eucalyptus clones at Mondi Forests (SA). Plant Cell Tissue Organ Cult., 81: 347-358.
  • He, S-s., Liu, C-z., Saxena, P.K. 2007. Plant regeneration of an endangered medicinal plant Hydrastis canadensis L. Sci. Hortic., 113: 82-86.
  • Ilczuk, A., Winkelman, T., Richartz., S., Witomska, M., Serek, A. 2005. In vitro propagation of Hippeastrum x chmielii Chm. - influence of flurprimidol and the culture in solid or liquid medium and in temporay immersion systems. Plant Cell Tissue Organ Cult., 83: 339-346.
  • Malosso, M.G., Bertoni, B.W., Coppede, J.S., Franca, S.C., Pereira, A.M.S. 2012. Micropropagation and in vitro conservation of Jacaranda decurrens. J. Med. Plants Res., 6: 1147-1154.
  • Fki, L., Bouaziz, N., Kriaa, W., Benjemaa-Masmoudi, R., Gargouri-Bouzid, R., Rival, A., Drira, N. 2011. Multiple bud cultures of 'Barhee' date palm (Phoenix dactylifera) and physiological status of regenerated plants. J. Plant Physiol., 168: 1694-1700.
  • Snyman, S.J., Nkwanyana, P.D., Watt, M.P. 2011. Alleviation of hyperhydricity of sugarcane plantlets produced in a RITA® and characterisation of acclimated plants. S. Afr. J. Bot., 77: 685-692.
  • Spier, M.R., de Souza Vandenberghe, L.P., Medeiros, A.B.P., Soccol, C.R. 2011. “Application of different type of bioreactors in bioprocesses”. In: Antolli PG, Liu Z (eds) Bioreactors: Design, Properties and Applications, Nova Sci Publishers, 55-90.