The current data on nanoparticles and pleura
Nanopartikül çapı 0.1 nm ve 100 nm arasında olan partiküllere verilen genel isimdir. Son zamanlarda çoğu çalışmanın oda- ğı olan karbon nanotüpler, yeni bir tür teknolojik kristal karbon olup sahip oldukları özel fiziksel ve kimyasal nitelikler nedeniyle elektronikten tıbba kadar çoğu alanda kullanılmaktadır. Günümüzde karbon nanotüpler akciğerler dahil çoğu organ üzerindeki etkileri çok sayıda çalışmada araştırılmış olmakla birlikte plevra üzerindeki etkileri kısıtlı sayıdaki hayvan çalışması ve in vitro çalışmalarda araştırılmıştır. Bu derlemede nanopartiküllerin ve özellikle de karbon nanotüplerin plevra üzerindeki etkileri gözden geçirildi.
Nanopartiküller ve plevra hakkında güncel veriler
Nanoparticle is the general name given to particles with a size between 0.1 nm and 100 nm. Carbon nanotubes, which have been the focus of many studies recently, are a new type of technological crystal carbon, having specific physical and chemical properties and being used in a wide array of fields from electronics to medicine. To date, the effects of carbon nanotubes over various organs including the lungs have been investigated by many studies, while their influence on pleura has been analyzed only by a limited number of animal and in vitro studies. The current data on the effects of nanoparticles and particularly carbon nanotubes to pleura is reviewed in this article.
___
- 1. Lehn JM. Toward self-organization and complex matter. Science 2002; 295: 2400-3.
- 2. Schmidt G, Decker M, Ernst H, et al. Small dimensions and material properties. Europaische Akademie Graue Reihe. In a definiton of nanotechnology Bad Neuenahr, 2003: 134.
- 3. Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 2009; 34: 559-67.
- 4. Jaurand MC, Renier A, Daubriac J. Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol 2009; 6: 16.
- 5. Dikensoy O. Mesothelioma due to environmental exposure to erionite in Turkey. Curr Opin Pulm Med 2008; 14: 322-5.
- 6. IARC: Man-made mineral fibres. IARC monographs on the evaluation of carcinogenic risks to humans 2002; 81: 1-381.
- 7. Toyooka S, Kishimoto T, Date H. Advances in the molecular biology of malignant mesothelioma. Acta Med Okayama 2008; 62: 1-7.
- 8. Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelima and asbestos exposure in the North Western Cape Province. Br J Ind Med 1960; 17: 260-71.
- 9. Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestoslike pathogenicity in a pilot study. Nat Nanotechnol 2008; 3: 423-8.
- 10. Ichihara G, Castranova V, Tanioka A, Miyazawa K. Induction of mesothelioma in p53 +/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008; 33: 381-2.
- 11. Sakamoto Y, Nakae D, Fukumori N, et al. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male fischer 344 rats. J Toxicol Sci 2009; 34: 65-76.
- 12. Pacurari M, Yin XJ, Zhao J, et al. Raw single-wall carbon nanotubes induce oxidative stres and activate mapks, ap-1, nf-kappab, and akt in normal and malignant human mesothelial cells. Environ Health Perspect 2008; 116: 1211-7.
- 13. Tabet L, Bussy C, Amara N, et al. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J Toxicol Environ Health A 2009; 72: 60-73.
- 14. Wick P, Manser P, Limbach LK, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007; 168: 121-31.
- 15. Kaiser JP, Wick P, Manser P, Spohn P, Bruinink A. Single walled carbon nanotubes (swcnt) affect cell physiology and cell architecture.J Mater Sci Mater Med 2008; 19: 1523-7.
- 16. Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 2007; 115: 1125-31.
- 17. Shvedova AA, Kisin ER, Porter D, et al. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of janus? Pharmacol Ther 2009; 121: 192-204.
- 18. Wu J, Liu W, Koenig K, Idell S, Broaddus VC. Vitronectin adsorption to chrysotile asbestos increases fiber phagocytosis and toxicity for mesothelial cells. Am J Physiol Lung Cell Mol Physiol 2000; 279: L916-L23.
- 19. Donaldson K, Hill IM, Beswick PH. Superoxide anion release by alveolar macrophages exposed to respirable industrial fibres: Modifying effect of fibre opsonisation. Exp Toxicol Pathol 1995; 47: 229-31.
- 20. Boylan AM, Sanan DA, Sheppard D, Broaddus VC. Vitronectin enhances internalization of crocidolite asbestos by rabbit pleural mesothelial cells via the integrin avb5. J Clin Invest 1995; 96: 1987-2001.
- 21. Lu J, Keane MJ, Ong T, Wallace WE. In vitro genotoxicity studies of chrysotile asbestos fibers dispersed in simulated pulmonary surfactant. Mutat Res 1994; 320: 253-9.
- 22. Jaurand MC, Thomassin JH, Baillif P, Magne L, Touray JC, Bignon J. Chemical and photoelectron spectrometry analysis of the adsorption of phospholipid model membranes and red blood cell membranes on to chrysotile fibres. Br J Ind Med 1980; 37: 169-74.
- 23. Thakur SA, Hamilton R Jr, Pikkarainen T, Holian A. Differential binding of inorganic particles to marco. Toxicol Sci 2009; 107: 238-46.
- 24. Hirano S, Kanno S, Furuyama A. Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 2008; 232: 244-51.
- 25. Pande P, Mosleh TA, Aust AE. Role of alphavbeta5 integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (a549) cells. Toxicol Appl Pharmacol 2006; 210: 70-7.