Food-grade selection markers in lactic acid bacteria

Laktik asit bakterileri (LAB) genellikle güvenli addedilen (GRAS) mikroorganizmalardır ve genellikle endüstride ve tıp alanında geniş kullanımı vardır. Biz gen mühendisliği aracılığıyla bu bakterilere ilave özellikler eklemeyi deniyoruz. Buna rağmen plazmidlerdeki antibiyotik direnç geni varlığından dolayı genetik olarak modifiye edilmiş bakterilerin gıda ve ilaç alanında kullanımı kabul edilebilir değildir. Bunun sonucunda gıda düzeyi seçim seçim markırları geliştirme bir ihtiyaçtır. Gıda düzeyi markırları seçilmiş özelliklerine göre üç sınıfa ayrılır: Dominant, tamamlayıcı ve şeker fermentasyon markırları. Bu derlemede ilave çalışmalara geçerli referanslar sağlamak için, gıda düzeyi seçim markırlarındaki gelişmeler gözden geçirildi.

Laktik asit bakterilerinde gıda düzeyi seçim markırları

Lactic acid bacteria (LAB) are generally regarded as safe (GRAS) microorganisms and widely used in industry and medicine. We are trying to add additional properties to them by gene engineering. However, the genetically modified bacteria are not acceptable to use in food and medicine due to the presence of antibiotic resistance genes in plasmids. Thus, it is necessary to develop food-grade selection markers. Food-grade markers can be divided into three classes based on their selected characteristics: dominant, complementary and sugar fermentation markers. The developments on these food-grade selection markers were reviewed in order to provide valuable references for the further study.

___

  • 1. Johansen E. Genetic engineering (b) Modification of bacteria. Pages 917-921 in Encyclopedia of Food Microbiology. R. Robinson, C. Batt, and P. Patel, ed. Academic Press, London, UK. 1999
  • 2. de Vos WM. Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. Int Dairy J 1999;9:3-10.
  • 3. Hansen EB. Commercial bacterial starter cultures for fermented foods of the future. Int J Food Microbiol 2002;78:119-131.
  • 4. Carr FJ, Chill D, Maida N. The lactic acid bacteria: a literature survey. Crit Rev Microbiol 2002;28:281-370.
  • 5. Mayo B, van Sinderen D, Ventura M. Genome analysis of food grade lactic Acid-producing bacteria: from basics to applications. Curr Genomics 2008;9:169-183.
  • 6. Kleerebezem M, Hugenholtz J. Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 2003;14:232-237.
  • 7. Fernández M, Martínez-Bueno M, Martín MC, Valdivia E, Maqueda M. Heterologous expression of enterocin AS-48 in several strains of lactic acid bacteria. J Appl Microbiol 2007;102: 1350-1361.
  • 8. Bueno DJ, Casale CH, Pizzolitto RP, Salvano MA, Oliver G. Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: a theoretical model. J Food Prot 2007;70: 2148-2154.
  • 9. von Wright A, Wessels S, Tynkkynen S, Saarela M. Isolation of a replication region of a large lactococcal plasmid and use in cloning of a nisin resistance determinant. Appl Environ Microbiol 1990;56: 2029-2035
  • 10. von Wright A, Räty K. The nucleotide sequence for the replication region of pVS40, a lactococcal food grade cloning vector. Lett Appl Microbiol 1993;17: 25-28.
  • 11. Froseth BR, McKay LL. Development and application of pMF011 as a possible food-grade cloning vector. J Dairy Sci 1991;74:1445-1453
  • 12. Hughes BF, McKay LL. Deriving phage-insensitive lactococci using a food-grade vector encoding phage and nisin resistance. J Dairy Sci 1992;75: 914-923
  • 13. Liu CQ, Su P, Khunajakr N, Deng YM, Sumual S, Kim WS, Tandianus JE, Dunn NW. Development of food-grade cloning and expression vectors for Lactococcus lactis. J Appl Microbiol 2005;98: 127-135.
  • 14. Takala TM, Saris PE. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol 2002;59: 467-471.
  • 15. Allison GE, Klaenhammer TR. Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl Environ Microbiol 1996;62: 4450-4460.
  • 16. Liu CQ, Leelawatcharamas V, Harvey ML, Dunn NW. Cloning vectors for lactococci based on a plasmid encoding resistance to cadmium. Curr Microbiol 1996;33: 35-39.
  • 17. Liu CQ, Khunajakr N, Chia LG, Deng YM, Charoenchai P, Dunn NW. Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 1997;38: 79-90.
  • 18. Wong WY, Su P, Allison GE, Liu CQ, Dunn NW. A potential food-grade cloning vector for Streptococcus thermophilus that uses cadmium resistance as the selectable marker. Appl Environ Microbiol 2003;69: 5767-5771.
  • 19. Leelawatcharamas V, Chia LG, Charoenchai P, Kunajakr N, Liu CQ, Dunn NW. Plasmid-encoded copper resistance in Lactococcus lactis. Biotechnol Lett 1997;19: 639-643
  • 20. Liu CQ, Charoechai P, Khunajakr N, Deng YM, Widodo, Dunn NW. Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. Gene 2002;297: 241-247.
  • 21. el Demerdash HA, Heller KJ, Geis A. Application of the shsp gene, encoding a small heat shock protein, as a food-grade selection marker for lactic acid bacteria. Appl Environ Microbiol 2003;69: 4408-4412.
  • 22. O' Sullivan D, Ross RP, Twomey DP, Fitzgerald GF, Hill C, Coffey A. Naturally occurring lactococcal plasmid pAH90 links bacteriophage resistance and mobility functions to a food-grade selectable marker. Appl Environ Microbiol 2001;67: 929-937.
  • 23. Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 1996;69: 193-202.
  • 24. Deegan LH, Cotter PD, Hill C, and Ross P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int Dairy J 2006;16:1058-1071.
  • 25. Piper C, Draper LA, Cotter PD, Ross RP, Hill C. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother 2009;64: 546-551.
  • 26. Arqués JL, Rodríguez E, Nuñez M, Medina M. Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain. J Dairy Sci 2008;91: 70-75.
  • 27. von Staszewski M, Jagus RJ. Natural antimicrobials: Effect of MicrogardTM and nisin against Listeria innocua in liquid cheese whey. Int Dairy J 2008;18: 255-259
  • 28. Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D. Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 2005;41: 464-469
  • 29. Allison GE, Fremaux C, Klaenhammer TR. Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 1994;176: 2235-2241.
  • 30. Fremaux C, Ahn C, Klaenhammer TR. Molecular analysis of the lactacin F operon. Appl Environ Microbiol 1993;59: 3906-3915.
  • 31. Brede DA, Faye T, Johnsborg O, Odegård I, Nes IF, Holo H. Molecular and genetic characterization of propionicin F, a bacteriocin from Propionibacterium freudenreichii. Appl Environ Microbiol 2004;70: 7303-7310.
  • 32. Lebrun M, Audurier A, Cossart P. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. J Bacteriol 1997;176: 3040-3048.
  • 33. Geis A, el Demerdash HA, Heller KJ. Sequence analysis and characterization of plasmids from Streptococcus thermophilus. Plasmid 2003;50: 53-69.
  • 34. Harrington A, Hill C. Plasmid involvement in the formation of a spontaneous bacteriophage insensitive mutant of Lactococcus lactis. FEMS Microbiol Lett 1992;75: 135-141.
  • 35. O'Sullivan D, Twomey DP, Coffey A, Hill C, Fitzgerald GF, Ross RP. Novel type I restriction specificities through domain shuffling of HsdS subunits in Lactococcus lactis. Mol Microbiol 2000;36: 866-875.
  • 36. Bron PA, Benchimol MG, Lambert J, Palumbo E, Deghorain M, Delcour J, De Vos WM, Kleerebezem M, Hols P. Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl Environ Microbiol 2002;68: 5663-5670.
  • 37. Bron PA, Hoffer SM, Van Swam II, De Vos WM, Kleerebezem M. Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using alanine racemase as a promoter probe. Appl Environ Microbiol 2004;70: 310-317.
  • 38. Madsen SM, Albrechtsen B, Hansen EB, Israelsen H. Cloning and transcriptional analysis of two threonine biosynthetic genes from Lactococcus lactis MG1614. J Bacteriol 1996;178: 3689-3694.
  • 39. Glenting J, Madsen SM, Vrang A, Fomsgaard A, Israelsen H. A plasmid selection system in Lactococcus lactis and its use for gene expression in L. lactis and human kidney fibroblasts. Appl Environ Microbiol 2002;68: 5051-5056.
  • 40. Sridhar VR, Smeianov VV, Steele JL. Construction and evaluation of food-grade vectors for Lactococcus lactis using aspartate aminotransferase and alpha-galactosidase as selectable markers. J Appl Microbiol 2006;101: 161-171.
  • 41. Ross P, O'Gara F, Condon S. Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. Appl Environ Microbiol 1990;56: 2164-2169.
  • 42. Fu X, Xu JG. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker. Microbiol Immunol 2000;44: 551-556.
  • 43. Sasaki Y, Ito Y, Sasaki T. ThyA as a selection marker in construction of food-grade host-vector and integration systems for Streptococcus thermophilus. Appl Environ Microbiol 2004;70: 1858-1864.
  • 44. Sun Q, Xiong Y, Ye C, Xu J. Construction of a food-grade secretion expression vector and use it for reporter protein expression in Lactococcus lactis. Wei Sheng Wu Xue Bao 2008;48: 293-298.
  • 45. Dickely F, Nilsson D, Hansen EB, Johansen E. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol Microbiol 1995;15: 839-847
  • 46. Sørensen KI, Larsen R, Kibenich A, Junge MP, Johansen E. A food-grade cloning system for industrial strains of Lactococcus lactis. Appl Environ Microbiol 2000;66: 1253-1258.
  • 47. Defoor E, Kryger MB, Martinussen J. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology 2007;153: 3645-3659.
  • 48. Takala TM, Saris PE, Tynkkynen SS. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG. Appl Microbiol Biotechnol 2003;60: 564-570.
  • 49. Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM. Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 1996;62: 1008-1013.
  • 50. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 2003;21: 785-789.
  • 51. Kilstrup M, Hammer K, Ruhdal Jensen P, Martinussen J. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 2005;29: 555-590
  • 52. Cancilla MR, Hillier AJ, Davidson BE. Lactococcus lactis glyceraldehyde-3-phosphate dehydrogenase gene, gap: further evidence for strongly biased codon usage in glycolytic pathway genes. Microbiology 1995;141:1027-1036.
  • 53. Hols P, Defrenne C, Ferain T, Derzelle S, Delplace B, Delcour J. The alanine racemase gene is essential for growth of Lactobacillus plantarum. J Bacteriol 1997;179: 3804-3807.
  • 54. Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 1999;17: 588-592.
  • 55. Hashiba H, Takiguchi R, Jyoho K, Aoyama K. Establishment of a host-vector system in Lactobacillus helveticus with beta-galactosidase activity as a selection marker. Biosci Biotechnol Biochem 1992;56: 190-194.
  • 56. MacCormick CA, Griffin HG, Gasson MJ. Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiol Lett 1995;127: 105-109.
  • 57. Gosalbes MJ, Esteban CD, Galán JL, Pérez-Martínez G. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 2000;66: 4822-4828.
  • 58. Lin MY, Harlander S, Savaiano D. Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus. Appl Microbiol Biotechnol 1996;45: 484-489.
  • 59. Jeong DW, Lee JH, Kim KH, Lee HJ. A food-grade expression/secretion vector for Lactococcus lactis that uses an alpha-galactosidase gene as a selection marker. Food Microbiol 2006;23: 468-475.
  • 60. Boucher I, Parrot M, Gaudreau H, Champagne CP, Vadeboncoeur C, Moineau S. Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl Environ Microbiol 2002;68: 6152-6161.
  • 61. Labrie S, Bart C, Vadeboncoeur C, Moineau S. Use of an alpha-galactosidase gene as a food-grade selection marker for Streptococcus thermophilus. J Dairy Sci 2005;88: 2341-2347.
  • 62. Leenhouts K, Bolhuis A, Venema G, Kok J. Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl Microbiol Biotechnol 1998;49: 417-423.
  • 63. Posno M, Heuvelmans PT, van Giezen MJ, Lokman BC, Leer RJ, Pouwels PH. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl Environ Microbiol 1991;57: 2764-2766.
  • 64. de Vos WM, Boerrigter I, van Rooyen RJ, Reiche B, Hengstenberg W. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J Biol Chem 1990;265: 22554-22560.
  • 65. de Vos WM, Gasson MJ. Structure and expression of the Lactococcus lactis gene for phospho-beta-galactosidase (lacG) in Escherichia coli and L. lactis. J Gen Microbiol 1989;135: 1833-1846.
  • 66. van Rooijen RJ, van Schalkwijk S, de Vos WM. Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J Biol Chem 1991;266: 7176-7181.
  • 67. van Rooijen RJ, Gasson MJ, de Vos WM. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol. 1992;174:2273-80.
  • 68. de Vos WM. February. Process for selecting and maintaining recombinant DNA in lactic acid bacteria. European patent application 1990:0 355 036.
  • 69. Chassy BM, Alpert CA. Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei. FEMS Microbiol Rev 1989;63:157-166.
  • 70. Lokman BC, van Santen P, Verdoes JC, Krüse J, Leer RJ, Posno M, Pouwels PH. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet 1991;230: 161-169.
  • 71. Chassy BM and Flickinger JL. Transformation of Lactobacillus casei by electroporation. FEMS Microbiol Lett 1987;44: 173-177.
  • 72. Bermúdez-Humarán LG. Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum Vaccin 2009;5: 264-267.
  • 73. Zhu Y, Zhang Y, Li Y. Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol 2009;83: 597-610
  • 74. Rodríguez H, Curiel JA, Landete JM, de las Rivas B, López de Felipe F, Gómez-Cordovés C, Mancheño JM, Muñoz R. Food phenolics and lactic acid bacteria. Int J Food Microbiol 2009;132: 79-90.
  • 75. Settanni L, Corsetti A. Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 2008;121: 123-138.
  • 76. Gálvez A, Abriouel H, López RL, Ben Omar N. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 2007; 120: 51-70.
  • 77. Weimer B, Seefeldt K, Dias B. Sulfur metabolism in bacteria associated with cheese. Antonie Van Leeuwenhoek 1999;76: 247-261.
  • 78. Tanous C, Kieronczyk A, Helinck S, Chambellon E, Yvon M. Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. Antonie Van Leeuwenhoek 2002;82: 271-278.
  • 79. Lacaze G, Wick M, Cappelle S. Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 2007;24: 155-160.
  • 80. Rouse S, van Sinderen D. Bioprotective potential of lactic acid bacteria in malting and brewing. J Food Prot 2008;71: 1724-1733.
  • 81. de Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 2007;13: 194-199.
  • 82. Hanniffy SB, Philo M, Peláez C, Gasson MJ, Requena T, Martínez-Cuesta MC. Heterologous production of methionine-gamma-lyase from Brevibacterium linens in Lactococcus lactis and formation of volatile sulfur compounds. Appl Environ Microbiol 2009;75: 2326-2332.
  • 83. Mercenier A, Müller-Alouf H, Grangette C. Lactic acid bacteria as live vaccines. Curr Issues Mol Biol 2000;2: 17-25.
  • 84. Steidler L, Rottiers P. Therapeutic drug delivery by genetically modified Lactococcus lactis. Ann N Y Acad Sci 2006;1072: 176-186.
  • 85. Brede DA, Lothe S, Salehian Z, Faye T, Nes IF. Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii. Appl Environ Microbiol 2007;73: 7542-7547.
TSK Koruyucu Hekimlik Bülteni-Cover
  • ISSN: 1303-734X
  • Yayın Aralığı: Yılda 8 Sayı
  • Başlangıç: 2002
  • Yayıncı: Gülhane Askeri Tıp Akademisi Halk Sağlığı AD.
Sayıdaki Diğer Makaleler

Sivillerde ekstremite ateşli silah yaralanmalarında fiziksel ve ruhsal morbiditeyi etkileyen faktörler

AHMET ASLAN, İnci MELTEM ATAY, Emin UYSAL, Ahmet ÖZMERİÇ

Hemodiyalize giren kronik böbrek yetmezliği hastalarında yaşam kalitesi ve etkileyen faktörler

Ersin NAZLICAN, HAKAN DEMİRHİNDİ, Muhsin AKBABA

Food-grade selection markers in lactic acid bacteria

Song HE, Fanghong GONG, Ya'nan GUO, Dechun ZHANG

Prevalence of cardiovascular risk factors in a low ıncome semi-urban community in the north-east Nigeria

Rufus Adesoji ADEDOYIN, Chidozie Emmanuel MBADA, Saidu Adamu ISMAİLA, Oluwole Taofeek AWOTİDEBE, Adewale Luqman OYEYEMİ, Rita Nkechi ATİVİE

Gaziantep Üniversitesi tıp ve hemşirelik bölümünde okuyan öğrencilerin besin güvenliğine ilişkin duyarlılık ve görüşleri

GÜLENDAM KARADAĞ, Neriman AYDIN, Hülya KAYAASLAN

Ergenler öznel iyi oluş düzeylerini, çevreyle ilişkiler aracılığıyla nasıl artırırlar?

ALİ ERYILMAZ

Sağlık çalışanlarında iş sağlığı ve güvenliği sorunları

MERAL SAYGUN

Türkiye'de özürlülük ve özürlülere sunulan hizmetler

Seval C. ULAŞ, Reyhan UÇKU

Manisa il merkez eczanelerinde çalışan eczacı ve kalfaların acil kontrasepsiyon konusunda bilgi ve uygulamaları

AYTEN TAŞPINAR, AYDEN ÇOBAN, Elvan ÖNTÜRK, M. Büşra ÖZTEKE, BİLGİN KIRAY VURAL

Viral meningoensefalit olgularının değerlendirilmesi

Handan İLHAN, Ömer COŞKUN, Ahmet KARAKAŞ, Bülent A. BEŞİRBELLİOĞLU, Kemal KARA, Can Polat EYİGÜN