Bitki mutantları, bitki ıslahı ve fonksiyonel gen çalışmaları için önemli biyo-kaynaklardır. Mevcut çalışmada, tuza toleranslı aday mutant buğday hatları elde etmek için somatik embriyogenez ile konvansiyonel kimyasal mutajenez tekniği birleştirildi. Bu amaçla; ekmeklik buğdayda (Triticum aestivum L. cv. Adana 99) genetik varyasyonlar yaratmak için embriyonik kalluslara 0-5 mM Sodyum Azid (NaN3), 30 dakika boyunca in vitro ortamda uygulandı. İşlem görmüş ve görmemiş kalluslar, somatik embriyo teşvik ortamına konularak somatik embriyo teşviki için 3 ve 4 mM NaN3 uygulaması optimum mutasyon dozları olarak tespit edildi. Ardından bu mutasyon dozları ile muamele edilen kalluslardan elde edilen somatik embriyolar tuz stresine tolerans geliştirmek için kullanılacak 125 mM NaCl içeren rejenerasyon ortamlarında tolerans açısından tarandı. NaN3 muamelesinde, orta düzeyde tuza toleransı olan 14 mutant elde edildi. Elde edilen sonuçlar; kimyasal mutagenez ile kombine halde in vitro teknik uygulamasının, popülasyonlarda yeterli genetik varyasyon oluşturmak ve 1.5 yıldan daha az bir sürede dördüncü jenerasyon tuz toleranslı aday buğday mutant hatlarını ıslah sürecini hızlandırarak elde etmek için kullanışlı bir yöntem olabileceğini göstermektedir.

OBTAINING CANDIDATE SALT TOLERANT WHEAT MUTANT LINES DERIVED FROM COMBINATION OF SODIUM AZIDE MUTAGENESIS AND SOMATIC EMBRYOGENESIS

Plant mutants are important bio-resources for crop breeding and functional gene studies. In the present study, conventional chemical mutagenesis technique was combined with somatic embryogenesis to obtain candidate salt tolerant mutant wheat lines. For this purpose, 0-5 mM Sodium Azide (NaN3) was applied for 30 minutes to embryonic calli under in vitro conditions to produce genetic variations in the bread wheat (Triticum aestivum L. cv. Adana 99). Treated and non-treated calli were put in somatic embryo induction media, and 3 and 4 mM NaN3 were determined as optimum mutation doses for somatic embryo induction. The obtained somatic embryos from these optimum mutagen doses were then screened for tolerance in regeneration media containing 125 mM NaCl to be used to improve tolerance to salt stress. In NaN3 treatment, 14 mutants with moderate salt tolerance were obtained. The results suggest that the in vitro technique in combination with chemical mutagenesis may be a useful approach for accelerating breeding strategies to create enough genetic variation in populations and to get fourth generation putative salt tolerant wheat mutant lines it less than 1.5 years.

___

  • 1. Ahmad, I., Nasir, I.A., Saleem, M., Haider, M., Javed, M.A., Javed, M.A., Latif, Z. & Husnain, T. 2010. In vitro induction of mutation in potato cultivars. Pakistan Journal of Phytopathology, 22(1): 51-57.
  • 2. Al-Qurainy, F. & Khan, S. 2009. Mutagenic effects of sodium azide and its application in crop improvement. World Applied Sciences Journal, 6(12): 1589-1601.
  • 3. Bidabadi, S.S., Mahmood, M., Meon, S., Wahab, Z. & Ghobadi, C. 2011. Evaluation of in vitro water stress tolerance among EMS –induced variants of banana (Musa spp., AAA), using morphological, physiological and molecular traits. Journal of Crop Science and Biotechnology, 14: 255-263.
  • 4. El-Sayed, E.H., Mahfouze, S.A., Shaltout, A.D., El-Dougdoug, K.A. & Sayed, R.A. 2012. Chemical mutation induction in vitro cultured shoot tip of banana cv. Grand Nain and for resistance some virus diseases. International Journal of Virology, 8: 178-190.
  • 5. Gamborg, O.L., Miller, R.A. & Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50: 151-158.
  • 6. Ganesan, M., Bhanumathi, P. & Jayabalan, N. 2005. Mutagenic effect of sodium azide on somatic embryo regeneration and root growth of cotton (Gossypium hirsutum L. CV. SVPR2). Journal of Agricultural Technology, 365-380.
  • 7. He, J., Hu, Y., Li, W.C. & Fu, F.L. 2009. Drought tolerant mutant induced by gamma-ray and sodium azide from maize calli. Maize Genetics Cooperation Newsletter, 83: 53-55.
  • 8. Hoagland, D.R. & Arnon, D.I. 1950. The Water Culture Method For Growing Plant Without Soil. University of California Berkley Press, CA, 347 pp.
  • 9. Hossain, Z., Mandal, A.K., Datta, S.K. & Biswas, A.K. 2006. Development of NaCl-tolerant strain in Chrysanthemum morifolium Ramat. through in vitro mutagenesis. Plant Biology, 8: 450-461.
  • 10. Hububat Sektör Raporu 2017. http://www.tmo.gov.tr/Upload/Document/hububatsektorraporu2017.pdf (Date accessed: 6.05.2019)
  • 11. ul-Haq, I., Memon, S., Gill, N.P. & Rajput, M.T. 2011. Regeneration of plantlets under NaCl stress from NaN3 treated sugarcane explants. African Journal of Biotechnology, 10: 16152-16156.
  • 12. Jain, M.S. 2010. Mutagenesis in crop improvement under the climate change. Romanian Biotech Letter, 15: 88-106.
  • 13. Kanber, R., Çullu, M.A., Kendirli, B., Antepli, S. & Yılmaz, N. 2005. Sulama, drenaj ve tuzluluk, 213-251. Paper presented at the Türkiye Ziraat Mühendisliği 6. Teknik Kongresi, Cilt I, 3-7 Ocak, Ankara-Turkey.
  • 14. Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.
  • 15. Olsen, O., Wang, X. & Von Wetttesin, D. 1993. Sodium azide mutagenesis: Preferential generation of AT -> GC transitions in the barley Antl8 gene. Proceedings of the National Academy of Sciences of the United States of America, 90: 8043-8047.
  • 16. Ozgen, M., Turet, M., Altinok, S. & Sancak, C. 1998. Effects callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell Reporter, 18: 331-335.
  • 17. Serrat, X., Esteban, R., Guibourt, N., Moysset, L., Nogués, S. & Lalanne, E. 2014. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods, 10(1): 5.
  • 18. Shrivastava, P. & Kumar, R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22: 123-131.
  • 19. Suprasanna, P., Jain, S.M., Ochatt, S.J., Kulkarni, V.M. & Predieri, S. 2012. Application of in vitro techniques in mutation breeding of vegetatively propagated crop. Pp. 371-385. In: Shu, Q.Y., Forster, B.P. & Nakagawa, H. (eds) Plant Mutation Breeding and Biotechnology. Join FAO/IAEA Programme Nuclear Techniques in Food and Agriculture, 595 pp.
  • 20. Wang, W. Vinocur, B. & Altman, A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1-14.
  • 21. Wannajindaporn, A., Poolsawat, O., Chaowiset, W. & Tantasawat, P.A. 2014. Evaluation of genetic variability in in vitro sodium azide-induced Dendrobium ‘Earsakul’ mutants. Genetics and Molecular Research, 13: 5333-5342.
  • 22. Yumurtaci, A. & Uncuoglu, A.A. 2012. Tissue specific responses alter the biomass accumulation in wheat under gradual and sudden salt stress. Journal of Stress Physiology and Biochemistry, 8: 143-156.
  • 23. Zair, I., Chlyah, A., Sabounji, K., Tittahsen, M. & Chlyah, H. 2003. Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tissue and Organ Culture, 73: 237-244.
  • 24. Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall Inc., Englewood Cliffs, Jersey, 620 pp.