Bu çalışmada, dolmalık biberde (Capsicum annuum L. var. Grossum L. cv. Kandil) kök dokusunda morfolojik, fizyolojik ve sitolojik parametreler kullanarak captan fungisitinin toksik etkisi araştırıldı. Dolmalık biber tohumları 7 gün boyunca farklı konsantrasyonlarda (0, 25μM, 50μM, 100μM, 150μM) captan fungisit içeren petri kabında çimlenmiştir. Elde edilen sonuçlar, captanla muamele edilmiş tohumlarda çimlenme oranının ve kök uzunluğunun düştüğünü göstermiştir. Ayrıca, captan fungisitinin tüm konsantrasyonları, mitotik indekste önemli bir azalmaya ve biber kökünün meristematik hücrelerinde c-mitoz ve kromozom yapışkanlığı gibi farklı tipte kromozomal anormalliklerin artmasına neden olmuştur. Ayrıca, captan muamelesi, 7 günlük dolmalık biber kökündeki kök elektrolit sızıntısında bir artış ile membran hasarına yol açarak oksidatif stresi tetiklemiştir. Oksidatif stres ile başa çıkmak için katalaz, glutatyon redüktaz ve toplam peroksidaz aktivitelerinin dolmalık biber köklerinde farklı captan fungisit konsantrasyonu altında arttığı belirlenmiştir. Elde ettiğimiz sonuçlar captan fungisitinin dolmalık biber tohumundaki çimlenme ve büyümeyi olumsuz yönde etkilediğini göstermiştir.

GENOTOXICITY AND ANTIOXIDANT ENZYME ACTIVITIES INDUCED BY THE CAPTAN FUNGICIDE IN THE ROOT OF BELL PEPPER (Capsicum annuum L. var. grossum L. cv. Kandil)

In this study, we investigated the toxic effects of the captan fungicide by using morphological, physiological and cytological parameters in bell pepper (Capsicum annuum L. var. grossum L. cv. Kandil) root tissue. The seeds of bell pepper were germinated in Petri dishes including different concentrations (0, 25μM, 50μM, 100μM, 150μM) of captan fungicide for 7 days. The germination rates and root lengths were significantly reduced in captan-treated seeds. All concentrations caused a significant decrease in mitotic index and increase in different types of chromosomal abnormalities such as c-mitosis and chromosome stickness in meristematic cells of bell pepper root. Captan treatment also induced oxidative stress by leading to membrane damage with an increase in root electrolyte leakage in 7 days-old bell pepper root. Catalase, glutathione reductase and total peroxidase activities increased under different concentrations as a response to oxidative stress. Our results showed that captan fungicide had negative effects on germination and growth in bell pepper seed.

___

  • 1. Abou-Zeid, N.M., Mahmoud, N.A. & Rania, A.S. 2016. Effect of some Biotic and Abiotic Applications on Control of Fusarium Wilt of Pepper Plants. Egyptian Journal of Phytopathology, 44 (2):103-118.
  • 2. Akpınar, I. 2014. The Physiological Effects of Thiram on Tomato (Lycopersicum esculentum Miller) Plants. Istanbul University Graduate School of Science and Engineering Biology Master Thesis.
  • 3. Aksoy, O. & Deveci, A. 2012. The investigation of the cytotoxic effects of some pesticides on soybean (Glycine max L.) Cytologia, 77: 475-483.
  • 4. Aktar, M.W., Sengupta D. & Chowdhury, A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2:1-12.
  • 5. Aytop, Y., Cukadar, M. & Sahin, A. 2014. Agricultural Sector Profile of Turkey in the World. Turkish Journal of Agricaltural and Natural Sciences, 1: 688-694.
  • 6. Bergmeyer, N. 1970. Methoden der enzymatischen, Analyse. Akademie Verlag, Berlin, Vol. 1. pp 636-647.
  • 7. Bonciu, E., Firbas, P., Fontanetti, C.S., Wusheng, J., Karaismailoğlu, M.C., Liu, D., Menicucci, F., Pesnya, D.S., Popescu, A., Romanovsky, A.V., Schiff, S., Ślusarczyk, J., de Souza, C.P., Srivastava, A., Sutan, A. & Papini A. 2018. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3): 191-209.
  • 8. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72: 248-254.
  • 9. Çavuşoğlu, K., Yalçın, E., Türkmen, Z., Yapar, K., Çavuşoğlu, K. & Çiçek, F., 2011. Investigation of Toxic Effects of the Glyphosate on Allium cepa. Journal of Agricultural Sciences, 17: 131-142.
  • 10. Dağistan, E., Demirtas, B., Tapki, N & Üremis I. & Arslan, M. 2015. Economic analyses of pesticide usage on red peppers (Capsicum) in Hatay Province in Turkey and determination of production cost. Custos e @gronegócio on line, 11(3): 56-65.
  • 11. Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A. & Yurin, V. 2014. Stress-induced electrolyte leakage: the role of K+permeable channels and involvement in promed cell death and metabolic adjustment. Journal of Experimental Botany, 65 (5): 1259-1270.
  • 12. Dias, M.C. 2012. Phytotoxicity: an overview of the physiological responses of plants exposed to fungicides. Journal of Botany, 135479. https://doi.org/10.1155/2012/135479.
  • 13. Gange, A.C., Brown, V.K. & Farmer, L.M. 1992. Effects of pesticides on the germination of weed seeds: implications for manipulative experiments. Journal of Applied Ecology, 29: 303-310.
  • 14. Gill, R.S.A. & Shaukat, S.S. 2000. Genotoxic effects of Dithane M-45 fungicide on root meristems of Allium cepa L. in vitro. Pakistan Journal of Biological sciences, 3(1): 114-117.
  • 15. Güney, İ.G. & Güldür, M.E. 2018. Inoculation Techniques for Assessing Pathogenicity of Rhizoctonia solani, Macrophomina phaseolina, Fusarium oxysporum and Fusarium solani on Pepper Seedlings. Turkish Journal of Agricultural Research, 5(1): 1-8.
  • 16. Fatma, F., Verma, S., Kamal, A. & Srivastava, A. 2018. Phytotoxicity of pesticides mancozeb and chlorpyrifos: correlation with the antioxidative defence system in Allium cepa. Physiology and Molecular Biology of Plants, 24(1): 115-123.
  • 17. Foyer, C.H. & Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta, 133: 21-25.
  • 18. Herzog, V. & Fahimi H. 1973. Determination of the activity of peroxidase. Analytical Biochemistry, 55: 554-562.
  • 19. Iqbal, M., Abbas, M., Nisar, J., Nazir, A. & Qamar, A. Z. 2019. Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: A review. Chemistry International, 5(1): 1-80.
  • 20. Karaismailoğlu, M.C. 2014. Evaluation of potential genotoxic effect of trifluralin in Helianthus annuus L. (sunflower). Caryologia, 67(3): 216-221.
  • 21. Karaismailoğlu, M.C. 2017. Assessments on the potential genotoxic effects of fipronil insecticide on Allium cepa somatic cells. Caryologia, 70(4): 378-384.
  • 22. Karaismailoğlu, M.C. & İnceer, H. 2017. Evaluation of potential genotoxic and cytotoxic effects of deltamethrin insecticide on somatic chromosomes of Helianthus annuus L. Caryologia, 70(4): 295-301.
  • 23. Kaur, R., Kaur, S. & Lata, M. 2011. Evaluation of DNA damage in agricultural workers exposed to pesticides using single cell gel electrophoresis (comet) assay. Indian Journal of Human Genetic, 17(3): 179-187.
  • 24. Kurás, L. 2004. Characterization of protein–DNA association in vivo by chromatin immunoprecipitation. In. Dickson RC, Mendenhall MD, editors. Signal transduction protocols, methods in molecular biology (Vol. 284). Totowa: Humana Press Inc.; p. 147-162.
  • 25. Mahapatra, K., De, S., Banerjee, S. & Roy, S. 2019. Pesticide mediated oxidative stress induces genotoxicity and disrupts chromatin structure in fenugreek (Trigonella foenum - graecum L.) seedlings. Journal of Hazardous Materials, 369: 362-374.
  • 26. Parween, T, Mahmooduzzafar, S. Jan & Fatma, T. 2012. Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. International Journal of Environmental Science and Technology, 9: 605-612.
  • 27. Parween, T., Jan, S., Mahmooduzzafar, S., Fatma, T. & Siddiqui, Z.H. 2016. Selective Effect of Pesticides on Plant-A Review. Critical Reviews in Food Science and Nutrition, 56(1): 160-179.
  • 28. Raja, W., Rathaur, P., John, S.A., Ramteke, P.W. & Dar, R.A. 2012. Effect of monocrotophos on electrolytic leakage, proline content and nitrogen metabolism of floating Pteridophyte Azolla microphylla. The Holistic Approach to Environment, 2(3): 111-120.
  • 29. Singh, A., Srivastava, A. K. & Singh, A. K. 2013. Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L. Environental Toxicology, 28: 666-672.
  • 30. Thomson, D. 1997. Confusion Amongst Codling Moth Fellows Continues: A Commercial Perspective On The İmplementation Of Codling Moth Mating Disruption in North America. International Organisation for Biological Control, 20(1): 57-63.
  • 31. Türkoğlu, S. 2012. Determination of genotoxic effects of chlorfenvinphos and fenbuconazole in Allium cepa root cells by mitotic activity, chromosome aberration, DNA content, and comet assay. Pesticide Biochemisty and Physiology, 103(3): 224-230.
  • 32. Wilner, J. 1955. Results Of Laboratory Tests For Winter Hardiness Of Woody Plants by Electrolyte Methods. Proceedings of the American Society for Horticultural Science, 66: 93-99.
  • 33. Verma, S. & Srivastava, A. 2018. Cyto-genotoxic consequences of carbendazim treatment monitored by cytogenetical analysis using Allium root tip bioassay. Environmental Monitoring and Assessment, 190(4): 238.
  • 34. You, W. & Barker, A.V. 1997. Herbicidal actions of root-applied glufosinate ammonium on tomato plants. Journal of Amercian Society for Horticultural Science, 127(2): 200-204.
  • 35. Yüzbaşıoğlu, E. & Dalyan, E. 2019. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiology and Biochemistry, 135: 322-330.
  • 36. Yüzbaşıoǧlu, E., Dalyan, E., Akpinar, I. 2017. Changes in photosynthetic pigments, anthocyanin content and antioxidant enzyme activities of maize (Zea mays L.) seedlings under high temperature stress conditions. Trakya University Journal of Natural Sciences, 18(2): 97-104.