Transport of nutrıents to Marmara sea by surface water sources of Tekirdağ and the economic loss caused by thıs

Trakya Bölgesi, birim alana fazla miktarda gübre kullanılan bir bölgedir. Toprağa uygulanan gübreler, drene olarak veya erozyon yoluyla nehirlere, yeraltı sularına ve sonunda Marmara Denizine ulaşmaktadır, yeraltı suları içilemez ve pek çok nehir kullanılamaz durumdadır. Bu araştırmada, bazı kirleticilerin incelenen derelerdeki mevsimsel dağılımları ve ekonomik kayıplar analiz edilmiştir. Aylık olarak örneklenen, dere sularında, nitrat azotu ve toplam fosfor derişimlerinin eşdeğeri olan kimyasal gübre formları ve bu gübrelerin ekonomik kayıp miktarları hesaplanmıştır. Araştırmadan elde edilen sonuçlara göre, toplam 368.4 mg l-1 nitrat azotu ve 328.4 mg l-1 toplam fosfor, araştırma alanından Marmara Denizine taşınmıştır. Bu derişimlerin eşdeğeri olan kimyasal gübre formu miktarları ise, toplam 6810.2 ton NH4NO3 yıl-1 ve 5528.9 ton TSP yıl-1 olarak hesaplanmıştır.

Tekirdağ yüzeysel su kaynakları ile Marmara Denizi'ne nutrient taşınımı ve bu yolla oluşan Ekonomik kayıplar

The region of Trakya is a place where excessive amount of fertilizer per unit area is used. Since fertilizers applied to the soil reach, either by draining or by erosion, the rivers, the ground water and finally the Sea of Marmara the ground water and most of the river waters are neither drinkable nor usable. In this study, seasonal distributions of certain pollutants in the streams and the economic losses were analyzed. The nitrate nitrogen and total phosphorus equivalent concentrations of chemical fertilizers and the economic losses for such fertilizers were calculated for the streams sampled monthly. According to the results of the study, a total of 368.4 mg l-1 nitrate nitrogen and 328.4 mg l-1 total phosphorus were carried from the study area to Marmara Sea. The chemical fertilizer quantities equivalent to those concentrations in total were 6810.2 ton NH4NO3 year-1 and 5528.9 ton TSP year-1.

___

  • 1. APHA-AWWA-WEF. Standart Methods for the Examination of Water and Wastewater. 18 th Edition. Copyright by American Public Healt Association. 4-108, 4-113. Washington. 1992.
  • 2. BOWES, M.J., LEACH, D and W.A. HOUSE. Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, UK. Science Total Environment. 336:225-41, 2005.
  • 3. COOPER, D.M., HOUSE, W.A., MAY, L. and B.GANNON . The phosphorus budget of the Thame catchment, Oxfordshire, UK:1. Mass balance. Science Total Environment. 282-283:233-51, 2002.
  • 4. COUNCIL of EUROPEAN COMMUNITIES. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. CEC, L 327, p. 0001-0073, 2000. http://europa.eu.int/comm/environment/water/water-framework/index_en.html.
  • 5. CUFFNEY, T.F., MEADOR, M.R., PORTER S.D. and M.E. GURTH. Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River basin, Washington, Environmental Monitoring and Assessment. 64: 259–270, 2000.
  • 6. DASSENAKIS, M., SCOULLOS, M., FOUFA, E., KRASAKOPOULOU, E., PAVLIDOU, A., and M. KLOUKINIOTOU. Effects of multiple source pollution on a small Mediterranean river. Applied Geochemistry. 13:197-211, 1998.
  • 7. EKİNCİ, H. Türkiye Genel Toprak Haritasının Toprak Taksonomisine Göre Düzenlenebilme Olanaklarının Tekirdağ Bölgesi Örneğinde Araştırılması. Doktora Tezi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, pp. 84-85, 1990.
  • 8. EKMEKYAPAR, F. Kumbağ Ile Marmara Ereglisi Arasındaki Sahil Seridinde Bulunan Bazı Önemli Derelerin 1998 Yılında Marmara Denizine Taşıdıkları Kimyasal Deşarj Düzeyleri ve Ekonomik Kayıplar. Doktora Tezi. Trakya Üniversitesi, Fen Bilimleri Enstitüsü, pp. 19-20, 2000.
  • 9. FETH, J.H. Mechanisms controlling world water chemistry: Evaporation-crystallization process, Science. 172: 870–871, 1971.
  • 10. GALLOWAY, J.N., ABER, J.D., ERISMAN, J.W., SEITZINGER, S.P., HOWARTH, R.W., COWLING, E.B. and B.J. COSBY. The nitrogen cascade, Bioscience. 53: 341–356, 2003.
  • 11. GIBBS, R.J. Mechanisms controlling world water chemistry, Science. 170: 1088–1090, 1970.
  • 12. GRIMSHAW, D. L., LEWIN, J., and R. FUGE. Seasonal and short term variations in concentration and supply of diss Zn to polluted aquatic environment, Environmental Pollution 11: 1–7, 1976.
  • 13. KATKAT, G., H. H. TOK, M. AYDIN, T. SAĞLAM, N. ÖNER And U. KAMBUROĞLU. Tekirdag İl sınırları dâhilindeki içme suyu kuyularında bazı kirlilik parametrelerinin dağılımları ve zamanla değişimleri. 1. Trakya Toprak ve Gübre Sempozyumu. Bildiriler Kitabı, pp. 289-295, Tekirdağ. 1997.
  • 14. KILHAM, P. Mechanisms controlling the chemical composition of lakes and rivers: Data from Africa, Limnology and Oceanography. 35: 80–83, 1990.
  • 15. LUCEY, K. J. and D. A. GOOLSBY. Effects of climatic variations over 11 years on nitrate-nitrogen concentrations in the Raccoon River Iowa. J. Environmental Quality. 22: 38-46, 1993.
  • 16. MAINSTONE, C.P. and W. PARR. Phosphorus in rivers – ecology and management. Science Total Environment. 282:-283: 25-47, 2002.
  • 17. MARKICH, S. J. and P. L. BROWN. Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia, The Science of the Total Environment. 201–230, 1998. 217:
  • 18. NEAL, C., JARVIE, H.P., NEAL, M., HILL, L., and H. WICKHAM. Nitrate concentrations in river waters of the upper Thames and its tributaries. Science of The Total Environment. 356:15-32, 2006.
  • 19. NOVOTNY, V. and H. OLEM. Water Quality. Prevention, identification, and management of diffuse pollution. 47-56. 1994.
  • 20. OENEMA, O. and C. W. J. ROEST. Nitrogen and phosphorus losses from agriculture into surface waters; the effects of policies and measures in the Netherlands. Water Science and Technology. 54-60, 1997.
  • 21. OMETO, J.P.H.B., MARTINELLI, L.A., BALLESTERI, M.A., GESSNER A., KRUSCHE, A.V., VICTORIA, R.L. and M. WILLIAMS. Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba river basin, south-east Brazil, Freshwater Biology. 44: 327–337, 2000.
  • 22. PROCHAZKOVA, L., P. BLAZKA and J. KOPACEK. Impact of diffuse pollution on water quality of the Vltava River, Czech Republic. Water Science and Technology. 33: 145-152, 1996.
  • 23. ROSSI, N., C. CIAVATTA and L. VITTORI ANTISARI. Seasonal pattern of nitrate losses from cultivated soil with subsurface drainage. Water, Air and Soil. Pollution. 60: 1-10, 1991.
  • 24. SAĞLAM, T. Toprak ve Suyun Kimyasal Analiz Metodları. Trakya Universitesi, Tekirdag Ziraat Fakultesi Yayınları. 189: 123-126. Tekirdağ. 1994.
  • 25. SCHREIBER, J. D. and R. F. CULLUM. Nutrient transport in loessial uplands of Missisippi. Presented at the 1992 winter meeting of ASAE, No: 92-2612. St. Joseph, U.S.A., 1992
  • 26. SCOTT, J. M., and P. L. BROWN. Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia. The Science of the Total Environment. 217: 201–230, 1998.
  • 27. SMITH, R.A., ALEXANDER, R.B. and M.G. WOLMAN. Water quality trends in the nation's rivers, Science. 235:1608–1615, 1987.
  • 28. SOYSAL, M. İ. Biometrinin Prensipleri. Trakya Universitesi, Tekirdag Ziraat Fakültesi Yayınları. 64: 315-316. Tekirdağ. 1995.
  • 29. The Records of the Directorate of Meteorology. 1998
  • 30.The Regulations of Turkish Water Pollution Control. Publications of Turkish Waqf of Environmental. 134: 544, 1999.
  • 31. TIEMEYER, B., KAHLE, P. and LENNARTZ, B. Nutrient losses from artificially drained catchments in North-Eastern Germany at different scales. Agricultural Water Management. Article press. 2006.
  • 32. WESLAKE, D.F. Temporal changes in aquatic macrophytes and their environment. In: Hoestland H, editor. Dynamique de Populations et Qualite de l’eau. Paris: Gauthier-Villars. Pp.109-38, 1981.
  • 33. WHITEHEAD, P.G., L. SOMLYODY and G. VAN STRATEN. Surface water quality models for planning, design and operational management. Proceedings of the International Symposium on Water Quality Modeling of Agricultural Non-Point Sources, Part 2. pp. 423-436, 1988.
  • 34. XIONG, Z. Q., XING, G.X. and Z. L. ZHU. Water dissolved nitrous oxide from paddy agroecosystem in China. Geoderma. Article press. 2006.
  • 35. ZHANG, J., ZHANG, Z., LIU, S., WU, Y., XIONG, H. and H. CHEN, Human impacts on the large world rivers: would Changjiang (Yangtze River) be an illustration?, Global Biogeochem Cycles. 13: 1099–1105,1999.