ÜÇ BOYUTLU AĞIRLIK MERKEZİ TESPİTİNE DAYALI MAKSİMUM YANAL KUVVETLE DEVRİLME ÖNLEME

Ağırlık merkezi (COG) yüksekliği devrilmeyi etkileyen önemli bir faktördür. Yazarların daha önceki çalışmaları, COG yükseklik tespiti için yenilikçi ve doğru bir yöntem sağlayan Üç Boyutlu Ağırlık Merkezinin (D3DCG) Tespiti teorisini değerlendirdi. Bu rapor, maksimum COG yüksekliğini ve devrilmeye neden olmadan var olabilecek maksimum yanal kuvveti hesaplayarak devrilme kazalarını önlemek için kullanılabilecek D3DCG'nin gelişimini açıklamaktadır. Bir aracın sabit toplam ağırlığı için COG yüksekliğinin bir üst sınırı vardır. Enerji korunumu yasasına göre, eğer COG yüksekliği bu üst sınırdan daha düşükse, o zaman aracın devrilmeye karşı potansiyel enerjisi vardır. Araç çalışırken yoldaki bozulmalar vücudunu sallar. Bazı potansiyel enerjiler, onarıcı bir kuvvet sağlamak ve COG'nin orijinal konumuna geri dönmesini sağlamak için yay enerjisine aktarılır. Bu nedenle, COG yüksekliği maksimum değerine ulaştığında, potansiyel enerji kaybolur ve devrilmeye neden olur. En yüksek COG, dönme torku dengesi ilkesine göre ifade edilebilir. Bu teoriyi doğrulamak için, bir masa üstü D3DCG cihazı ve bir kule nesnesi ile COG ayarlanabilir bir deney tasarlanmıştır. Toplam nesne ağırlığı değişmez, ancak COG yüksekliği, nesne artık cihaz üzerinde dengeyi koruyamayacak duruma gelene kadar artar. Gerçek COG ve en yüksek COG'nin karşılaştırılması, yalnızca COG en yüksek COG'den düşük olduğunda nesnenin devrilmeyeceğini doğruladı. Taşıt gibi hareketli bir nesneye yanal bir kuvvet etki ediyorsa, nesne eğilir. Aynı zamanda, geri yükleme momenti, yuvarlanma momentine direnecektir. D3DCG teorisine göre, yanal kuvvet yuvarlanma açısı ile ilişkilidir. Araç devrilmeye başladığında, hareket eden aracın fiziksel yapısına bağlı olarak kritik yanal kuvvet, yuvarlanma açısı ile temsil edilebilir. Bu nedenle, yuvarlanma açısını bilinmeyen bir değişken olarak ortadan kaldırarak, maksimum yanal kuvvet bilinen iki değişkenle ifade edilebilir: gerçek COG yüksekliği ve maksimum COG yüksekliği. Bu teoriyi doğrulamak için, uzaktan kumandalı bir kamyon rastgele bir dönüş yarıçapında dönecek şekilde yapılır. Sonra devrilene kadar hızı kademeli olarak artar. Gerçek zamanlı yanal kuvvet kaydedilir ve hesaplanan maksimum yanal kuvvet ile karşılaştırılır. Sonuçlar, gerçek zamanlı yanal kuvvet maksimum yanal kuvvete ulaştığında devrilmenin gerçekleştiğini göstermektedir. Bu çalışma, toplam ağırlığı, araç hızını veya dönüş yarıçapını bilmeden yeni bir devrilmeyi önleme yöntemini incelemektedir. Bu teorinin doğruluğu, gerçek zamanlı yanal kuvvet ve D3DCG'ye dayalı hesaplanan maksimum yanal kuvvet karşılaştırılarak iyi bir şekilde doğrulandı.

ROLLOVER PREVENTION BY MAXIMUM LATERAL FORCE BASED ON THE DETECTION OF THREE-DIMENSIONAL CENTER OF GRAVITY

The center of gravity (COG) height is an important factor affecting rollover. Earlier studies by the authors assessed the theory of Detection of Three-Dimensional Center of Gravity (D3DCG), which provides an innovative and accurate method for COG height detection. This report describes development of D3DCG, which can be used to prevent rollover accidents by calculating the maximum height of COG and the maximum lateral force that can exist without causing rollover. For a fixed total weight of a vehicle, the COG height has an upper limit. Based on the law of energy conservation, if the COG height is lower than that upper limit, then the vehicle has potential energy against rollover. When the vehicle is running, road disturbances make its body shake. Some potential energy transfers to the spring energy to provide a restorative force and to make the COG return to its original position. Therefore, when the COG height reaches its maximum value, the potential energy disappears, causing rollover. The highest COG can be expressed according to the principle of the balance of rotational torque. To verify this theory, a COG adjustable experiment is designed with a table-top D3DCG device and a tower object. The total object weight does not change, but its COG height increases until the object cannot maintain stability on the device anymore. Comparison of the real COG and the highest COG confirmed that only when the COG is lower than the highest COG, the object will not roll over. If a lateral force is acting on a moving object such as a vehicle, then the object will tilt. At the same time, the restoring moment will resist the rolling moment. According to the theory of D3DCG, the lateral force has relation with the rolling angle. When the vehicle starts to roll over, based on the physical structure of moving vehicle, the critical lateral force can be represented by the rolling angle. Therefore, by eliminating the rolling angle as an unknown variable, the maximum lateral force can be expressed by two known variables: the actual COG height and the maximum height of COG. To verify this theory, a remotely controlled truck is made to rotate in a random rotation radius. Then its speed increases gradually until it rolls over. The real-time lateral force is recorded and compared with the calculated maximum lateral force. Results indicate that rollover occurs when the real-time lateral force reaches the maximum lateral force. This study examines a novel method of rollover prevention without knowing either the total weight, the vehicle speed or turning radius. The accuracy of this theory was well confirmed by comparing the real-time lateral force and the calculated maximum lateral force based on D3DCG.

___

  • Dang, R., and Watanabe, Y. (2016). Three-Dimensional Center of Gravity for Trucks Hauling Marine Containers. Journal of Engineering Research and Applications, 6(1), 27-34. He, J. L., Gong, B., Zhu, T., Yang, C. X., and Sun, Y. F. (2017). Critical safety speed model of corners based on road geometry parameters. Journal of Changsha University of Science and Technology (Natural Science), 14(4), 75-82.
  • National Highway Traffic Safety Administration. Passenger Car and Light-Truck Occupants Killed, by Vehicle Type and Rollover Occurrence, 1982-2020. available at: https://cdan.dot.gov/SASStoredProcess/guest
  • Kawashima, S., and Watanabe, Y. (2016). Center of gravity detection for railway cars. Open Journal of Mechanical Engineering (OJME), 1(1), 8-11.
  • Kawashima, S., and Watanabe, Y. (2016). Experiment on The Three Dimensional Detection of Center of Gravity for Detecting Deterioration of Automobile Tire. The Japan Society of Mechanical Engineers, 2012-12.5–7, 161-164.
  • Rogers, S., and Zhang, W. (2003). Development and evaluation of a curve rollover warning system for trucks. Institute of Electrical and Electronics Engineers (IEEE), 294-297. Watanabe, Y. (2017). Three-Dimensional Center of Gravity Detections for Preventing Rollover Accidents of Trailer Trucks Hauling Containers. Open Journal of Mechanical Engineering (OJME), 2(1), 11-14.
  • Yu, K., and Watanabe, Y. (2021). Effects of Center of Gravity Position on Rollover Based Upon Detection of Three-Dimensional Center of Gravity. Toros University FEASS Journal of Social Sciences Special Issue on International Symposium of Sustainable Logistics, 70-84.